首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Intense Tm3+ blue upconversion emission has been observed in Tm3+–Yb3+ codoped oxyfluoride tellurite glass under excitation with a diode laser at 976 nm. Three emission bands centered at 475, 650 and 796 nm corresponding to the transitions 1G43H6, 1G43H4 and 3F43H6, respectively, simultaneously occur. The dependence of upconversion intensities on Tm3+ ions concentration and excitation power are investigated. For fixed Yb2O3 concentrations of 5.0 mol%, the maximum upconversion intensity was obtained with Tm2O3 concentration of about 0.1 mol%. The blue upconversion luminescence lifetimes of the Tm3+ transitions 1G43H6 are measured. The results are evaluated by the possible upconversion mechanisms.  相似文献   

2.
Ba0.8Sr0.2TiO3 (BST) thick films co-doped with Yb3+ and Ho3+ were fabricated by the screen printing techniques on alumina substrates. The structure and morphology of the BST thick films were studied by XRD and SEM, respectively. After sintered at 1240 °C for 100 min the BST thick films are polycrystalline with a perovskite structure. The upconversion luminescence properties of the RE-doped BST thick films under 800 nm excitation at room temperature were investigated. The upconversion emission bands centered at 470 and 534 nm corresponding to 5F1 → 5I8 and 5F4 → 5I8 transition, respectively were observed, and the upconversion mechanisms were discussed. The dependence of the upconversion emission intensity upon the Ho3+ ions concentration was also examined; the emission intensity reaches a maximum value in the sample with 2 mol% Yb3+ and 0.250 mol% Ho3+ ions. All the results show that the BST thick films co-doped with Yb3+ and Ho3+ may have potential use for photoelectric devices.  相似文献   

3.
Yb3+/Tm3+-codoped oxychloride germanate glasses for developing potential upconversion lasers have been fabricated and characterized. Structural properties were obtained based on the Raman spectra analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energies of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1G43H6 and 1G43H4, respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of blue (477 nm) emission increases significantly, while the red (650 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the blue emissions than the red emission in oxychloride germanate glasses. The possible upconversion mechanisms are discussed and estimated. Intense blue upconversion luminescence indicates that these oxychloride germanate glasses can be used as potential host material for upconversion lasers.  相似文献   

4.
The β–NaYF4: Yb3+, Tm3+ @ TiO2 nanocomposite has been prepared by a facile hydrothermal method followed by the hydrolysis of TBOT, and then NaYF4: Yb3+, Tm3+ @ TiO2, HAuCl4 and sodium citrate were put into an oil bath for reaction to obtain the β–NaYF4: Yb3+, Tm3+ @ TiO2 @ Au core–shell nanocomposite. XRD and HRTEM show that the samples exhibit the hexagonal phase NaYF4, anatase TiO2 and cubic Au, indicating that the core–shell phases of NaYF4−TiO2 or NaYF4−TiO2−Au coexist in these samples. EDS and XPS results show the presence of Na, Y, F, Ti, O and Au elements. When TiO2 was coated on the surface of upconversion nanomaterials of NaYF4: Yb3+, Tm3+, the photocatalytic activity was improved significantly, and the β–NaYF4: Yb3+, Tm3+ @ TiO2 nanocomposite gives the highest photodegradation efficiency for MB and RhB, and decomposes about 73% of MB or 80% of RhB within 4.5 h under simulated solar light irradiation respectively. When the ultraviolet light from simulated sunlight irradiation was removed by the addition of a UV filter, the β–NaYF4: Yb3+, Tm3+ @ TiO2 nanocomposite decomposes about 42% of MB or 48% of RhB within 4.5 h. It means that the upconversion–driven photocatalytic performance (decomposes 42% of MB or 48% of RhB) is more effective than UV light–driven photocatalytic performance (31% of MB or 32% of RhB) in the photodegradation process. In addition, the β–NaYF4: Yb3+, Tm3+ @ TiO2 @ Au core–shell nanocomposite does not exhibit the better photocatalytic activity, and the optimal research will be carried out in the future.  相似文献   

5.
This article reports the luminescence properties of amphipathic YVO4:Er3+/Yb3+ nanoparticles (average grain size ca. 20 nm) obtained by an oleate-aided hydrothermal process. Depending on the upconversion (UPC) and downconversion (DWC) processes, they show luminescence in the visible and near-infrared (NIR) regions, respectively, by 980-nm excitation. The sample doped with Er3+:2.5 mol% and Yb3+:10 mol% showed the highest luminescence intensity in both the visible and NIR regions as a result of efficient energy transfer from Yb3+ to Er3+ ions. The hydrothermal treatment greatly enhanced both the DWC and UPC luminescence efficiencies. This is due to the reduction in the concentration of surface defects and ligands, accompanied by grain growth. NIR Fluorescence microscopy revealed for the first time that DWC luminescence is sufficiently intense for application of these nanocrystals as a NIR bioprobe.  相似文献   

6.
Ultrafine Er3+/Yb3+-codoped SrTiO3 (SEYT) powders in cubic form have been prepared by a poly-meric precursor method. The single phase perovskite for the obtained material was observed at low temperature. An efficient infrared-to-visible conversion in SEYT perovskite will be reported. Visible emissions at 550 and 663 nm corresponding to the 2S3/24I15/2 and 4F9/24I15/2 transitions, respectively, were observed under continuous wave excitation at 980 nm. An enhancement of the visible upconversion luminescence in Er3+/Yb3+ codoped samples was confirmed due to efficient energy transfer from Yb3+ to Er3+ ions. The quadratic pump power dependence of these emissions indicated the contribution of two photons to the upconversion process. The text was submitted by the authors in English.  相似文献   

7.
A series of In3+-doped Ba0.85Ca0.15TiO3:0.75%Er3+/xIn3+ (BCT:Er/xIn) lead-free piezoelectric ceramics with excellent upconversion luminescence were synthesized by the solid state reaction method. The effects of In3+ content on the crystal structure, ferroelectric, dielectric, piezoelectric, and upconversion luminescence properties were systematically studied. Under 980 nm excitation, a giant enhancement of the green emission (550 nm) by 10 times is achieved upon 2.5% mol In3+ doping, which is rarely observed in rare-earth ions-doped perovskite ferroelectric materials. The ultraviolet-visible-near infrared absorption measurements show that the In3+ doping may improve the dissolution of Er3+ ions and modify the isolate-/clustered-Er3+ ratio for x?≤?2.5%, resulting in the enhancement of the absorption cross-section, thereby contributing to the enhancement of green luminescence. Unfortunately, the In3+ doping suppresses the ferroelectric and piezoelectric properties of the BCT:Er/xIn ceramics. This problem can be resolved by adding a small amount (1 mol%) of Yb3+ to the BCT:Er/xIn ceramics to restore their good ferroelectric and piezoelectric properties. Such In3+ and rare-earth ions co-doped ceramics with greatly enhanced upconversion luminescence and good ferroelectricity and piezoelectricity may have potential applications in electro-optical devices.  相似文献   

8.
The luminescence properties of Sm3+ ions in YAl3B4O12 were studied upon synchrotron excitation in the 3.8–11 eV region. In addition to the 4f → 4f excitation bands, the excitation spectra of the Sm3+ emission contain broad bands at 6.1 and ~7.0 eV. These bands are attributed to charge transfer transition in Sm3+–O2− complexes and 4f → 5d transition of Sm3+ ions, respectively. The optical absorption edge of YAl3B4O12 was determined at 7.3 eV. A comparison with the results of electronic structure calculations on YAl3B4O12 is also made.  相似文献   

9.
This article presents the synthesis and photoluminescence (PL) properties of Y2Zr2O7:Tb3+. The Tb3+-doped Y2Zr2O7 zirconates were successfully synthesized by a hydrothermal process at 200 °C for 20 h. X-ray diffractometer (XRD) patterns revealed that all of the products were phase-pure with the fluorite structure. PL study showed that the Y2Zr2O7:Tb3+ phosphors exhibited obvious PL emission peaks which located at 490, 545, 585, and 623 nm; the dominant emission located at 545 nm is assigned to 5D4 → 7F5 transition. Furthermore, Tb3+-doping concentration strongly affected the PL properties, and the quenching concentration is 5 at.%.  相似文献   

10.
The upconversion luminescence (UCL) of nanocrystalline gadolinium oxide (Gd2O3) doped with Er3+ and Yb3+ ions has been studied in the temperature range of 90–400 K. The nanocrystals were synthesized by chemical vapor deposition and possessed a cubic crystalline structure with an average particle size within 48–57 nm. It is established that the USL intensity in the red (4F9/24I15/2 transition in Er3+ ion) and green (4S3/24I15/2 transition) spectral regions depends on the sample temperature and concentration of dopant ions, as well as on the additional structural defects (anion vacancies) created in the crystal lattice by the introduction of Zn2+ ions or irradiation with high-energy (10 MeV) electrons. The luminescence efficiency and spectrum of the upconversion phosphor are determined by energy transfer processes.  相似文献   

11.
The influence of activation of the Y2O3 matrix of the Y2O3:Eu3+ phosphor by Bi3+ ions on the luminescence of Eu3+ and Bi3+ ions in it and on conditions of the excitation energy transfer to luminescence centers is studied. It is shown that the presence of Bi3+ ions leads to the appearance of recombination luminescence with participation of bismuth ions at low concentrations (up to 6–8 at %) of the dominant activator europium and to an increase in the threshold of intrinsic concentration quenching of its luminescence.  相似文献   

12.
Al3+/Mg2+ doped Y2O3:Eu phosphor was synthesized by the glycine-nitrate solution combustion method. In contrast to Y2O3:Eu which showed an irregular shape of agglomerated particles (the mean particle size >10 μm), the morphology of Al3+/Mg2+ doped Y2O3:Eu crystals was quite regular. Al3+/Mg2+ substituting Y3+ in Y2O3:Eu resulted in an obvious decrease of the particle size. Meanwhile, higher the Al3+/Mg2+ concentration, smaller the particle size. In particular, the introduction of Al3+ ion into Y2O3 lattice induced a remarkable increase of PL and CL intensity. While, for Mg2+ doped Y2O3:Eu samples, their PL and CL intensities decreased. The reason that causes the variation of PL and CL properties for Al3+ and Mg2+ doped Y2O3:Eu crystals was concluded to be related to sites of Al3+ and Mg2+ ions inclined to take and the difference of ion charge.  相似文献   

13.
The Stokes and anti-Stokes luminescence of undoped and rare-earth-doped (Er3+ and Yb3+) BaSiO3 has been studied in the temperature range 78–450 K under excitation at 10–1000 mV. The results indicate that the emission mechanism in BaSiO3 crystals is hole recombination and that the anti-Stokes luminescence is due to consecutive sensitization; that is, the Yb3+ ions in the BaSiO3 compound act as luminescence sensitizers, and the Er3+ ions, as activators.  相似文献   

14.
《Materials Letters》2007,61(11-12):2200-2203
Er3+/Tm3+/Yb3+ tridoped oxyfluoride glass ceramics was synthesized in a general way. Under 980 nm LD pumping, intense red, green and blue upconversion was obtained. And with those primary colors, multicolor luminescence was observed in oxyfluoride glass ceramics with various dopant concentrations. The red and green upconversion is consistent with 4F9/2  4I15/2 and 2H11/2, 4S3/2  4I15/2 transition of Er3+ respectively. While the blue upconversion originates from 1G4  3H6 transition of Tm3+. This is similar to that in Er3+/Yb3+ and/or Tm3+/Yb3+ codoped glass ceramics. However the upconversion of Tm3+ is enhanced by the energy transfer between Er3+ and Tm3+.  相似文献   

15.
This paper describes the synthesis of new upconverting luminescent nanoparticles that consist of YF3:Yb3+/Er3+ functionalized with poly(acrylic acid) (PAA). Unlike the upconverting nanocrystals previously reported in the literature that emit visible (blue-green-red) upconversion fluorescence, these as-prepared nanoparticles emit strong near-infrared (NIR, 831 nm) upconversion luminescence under 980 nm excitation. Scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction were used to characterize the size and composition of the luminescent nanocrystals. Their average diameter was about 50 nm. The presence of the PAA coating was confirmed by infrared spectroscopy. The particles are highly dispersible in aqueous solution due to the presence of carboxylate groups in the PAA coating. By carrying out the synthesis in the absence of PAA, YF3:Yb3+/Er3+ nanorice materials were obtained. These nanorice particles are larger (∼700 nm in length) than the PAA-functionalized nanoparticles and show strong typical visible red (668 nm), rather than NIR (831 nm), upconversion fluorescence. The new PAA-coated luminescent nanoparticles have the pottential be used in a variety of bioanalytical and medical assays involving luminescence detection and fluorescence imaging, especially in vivo fluorescence imaging, due to the deep penetration of NIR radiation.   相似文献   

16.
Yb3+/Er3+ and Yb3+/Tm3+ co-doped LaF3 nanoparticles with upconversion luminescence properties were prepared via the co-precipitation method, followed by heat treatment at different temperatures in the range of 180°C to 600°C. We investigated the influence of heat treatment temperatures on the size, morphology, and upconversion luminescence intensity of the nanoparticles. Significant increases of the particle size and upconversion luminescence intensity of the nanoparticles were observed with increasing heat treatment temperature. The upconversion mechanism of the LaF3:Yb3+,Er3+ and LaF3:Yb3+,Tm3+ nanoparticles was also discussed.  相似文献   

17.
The Mn2+, Yb3+, Er3+: ZnWO4 green phosphors are synthesized successfully through the high temperature solid state reaction method. The micro-structure and morphology have been investigated by means of XRD and EDS. The doped concentrations of Mn2+, Yb3+, Er3+ are measured by ICP. The absorption spectra and emission spectra with different doped concentrations of Mn2+ are presented to reveal the influence of Mn2+ on the green up-conversion performance. Excited with 970 nm LED, the up-conversion emission peak at 547 nm is obtained and the CIE spectra as well as the green light photo are also presented. The results indicate that the Mn2+ ions play the role of the luminescence adjustment in the up-conversion process, which can improve the up-conversion green emission intensity effectively. The luminescence adjustment mechanism of Mn2+ ions in Mn2+, Yb3+, Er3+: ZnWO4 green phosphors has been discussed. The crystal parameters of Dq, B and C are calculated to evaluate the energy level split effect.  相似文献   

18.
We report the synthesis and spectroscopic characterization of polycrystalline Yb3+-doped (1, 2, and 5 at %) Ln3BWO9 (Ln = Gd and Y) borotungstates as candidate gain media for diode-pumped near-IR and visible solid-state lasers. Unpolarized luminescence and absorption spectra for the Yb3+ 2 F 7/22 F 5/2 transition are measured at T = 77 and 300 K, the lifetime of the 2 F 5/2 excited state is determined, and the emission cross section of the stimulated Yb3+ 2 F 5/22 F 7/2 transition in these compounds is evaluated. Offering a combination of nonlinear optical and lasing properties, the Ln3BWO9 (Ln = Gd, Y) hexagonal borotung-states can be used as bifunctional media for diode-pumped lasers with nonlinear laser frequency self-conversion.  相似文献   

19.
We have identified the main general trends of variations in the spectral and kinetic properties of the Nd3+ and Yb3+ IR luminescence bands in (Y0.99–xNd0.01Ybx)2O2S solid solutions under excitation at wavelengths of 0.810 and 0.940 µm. Using these results, we have developed the first multispectral IR phosphors with various relative intensities of the IR luminescence bands in the ranges 0.88–0.94, 0.94–1.06, 1.06–1.12, and 1.35–1.42 µm under excitation with 0.810-µm light and bright IR luminescence in the range 0.94–1.06 µm under excitation with 0.940-µm light.  相似文献   

20.
The roentgenoluminescence spectra, temperature-dependent activator luminescence, optically stimulated luminescence, and the effect of IR irradiation on the yield and spectral composition of the low-temperature roentgenoluminescence and thermoluminescence curves of the Y3Al5O12:Ce3+ scintillator have been studied in the temperature range 85–295 K. The results, coupled with earlier data, suggest that the Ce3+ ions in the garnet crystal studied form Ce3+ p hole centers and increase the concentration of electronic F ?-centers responsible for the IR stimulation band at 940 nm. The reduction in roentgenoluminescence yield on cooling Y3Al5O12:Ce3+ to below 230 K is due to the significant localization of excited carriers at defects, which show up in thermoluminescence peaks and optical stimulation spectra. The low-temperature Ce3+ luminescence in Y3Al5O12:Ce3+ seems to result from the recombination of activator-bound excitons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号