首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We propose a method for the detection of masses in mammographic images that employs Gaussian smoothing and sub-sampling operations as preprocessing steps. The mass portions are segmented by establishing intensity links from the central portions of masses into the surrounding areas. We introduce methods for analyzing oriented flow-like textural information in mammograms. Features based on flow orientation in adaptive ribbons of pixels across the margins of masses are proposed to classify the regions detected as true mass regions or false-positives (FPs). The methods yielded a mass versus normal tissue classification accuracy represented as an area (Az) of 0.87 under the receiver operating characteristics (ROCs) curve with a dataset of 56 images including 30 benign disease, 13 malignant disease, and 13 normal cases selected from the mini Mammographic Image Analysis Society database. A sensitivity of 81% was achieved at 2.2 FPs/image. Malignant tumor versus normal tissue classification resulted in a higher Az value of 0.9 under the ROC curve using only the 13 malignant and 13 normal cases with a sensitivity of 85% at 2.45 FPs/image. The mass detection algorithm could detect all the 13 malignant tumors successfully, but achieved a success rate of only 63% (19/30) in detecting the benign masses. The mass regions that were successfully segmented were further classified as benign or malignant disease by computing five texture features based on gray-level co-occurrence matrices (GCMs) and using the features in a logistic regression method. The features were computed using adaptive ribbons of pixels across the boundaries of the masses. Benign versus malignant classification using the GCM-based texture features resulted in Az = 0.79 with 19 benign and 13 malignant cases.  相似文献   

2.
PURPOSE: To investigate the potential usefulness of special view mammograms in the computer-aided diagnosis of mammographic breast lesions. MATERIALS AND METHODS: Previously, we developed a computerized method for the classification of mammographic mass lesions on standard-view mammograms, i.e., mediolateral oblique (MLO) view and/or cranial caudal (CC) views. In this study, we evaluate the performance of our computerized classification method on an independent database consisting of 70 cases (33 malignant and 37 benign cases), each having CC, MLO, and special view mammograms (spot compression or spot compression magnification views). The mass lesion identified in each of the three mammographic views was analyzed using our previously developed and trained computerized classification method. Performance in the task of distinguishing between malignant and benign lesions was evaluated using receiver operating characteristic analysis. On this independent database, we compared the performance of individual computer-extracted mammographic features, as well as the computer-estimated likelihood of malignancy, for the standard and special views. RESULTS: Computerized analysis of special view mammograms alone in the task of distinguishing between malignant and benign lesions yielded an Az of 0.95, which is significantly higher (p < 0.005) than that obtained from the MLO and CC views (Az values of 0.78 and 0.75, respectively). Use of only the special views correctly classified 19 of 33 benign cases (a specificity of 58%) at 100% sensitivity, whereas use of the CC and MLO views alone correctly classified 4 and 8 of 33 benign cases (specificities of 12% and 24%, respectively). In addition, we found that the average computer output of the three views (Az of 0.95) yielded a significantly better performance than did the maximum computer output from the mammographic views. CONCLUSIONS: Computerized analysis of special view mammograms provides an improved prediction of the benign versus malignant status of mammographic mass lesions.  相似文献   

3.
In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (Az = 0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (Az = 0.80).  相似文献   

4.
A new model-based vision (MBV) algorithm is developed to find regions of interest (ROI's) corresponding to masses in digitized mammograms and to classify the masses as malignant/benign. The MBV algorithm is comprised of 5 modules to structurally identify suspicious ROI's, eliminate false positives, and classify the remaining as malignant or benign. The focus of attention module uses a difference of Gaussians (DoG) filter to highlight suspicious regions in the mammogram. The index module uses tests to reduce the number of nonmalignant regions from 8.39 to 2.36 per full breast image. Size, shape, contrast, and Laws texture features are used to develop the prediction module's mass models. Derivative-based feature saliency techniques are used to determine the best features for classification. Nine features are chosen to define the malignant/benign models. The feature extraction module obtains these features from all suspicious ROI's. The matching module classifies the regions using a multilayer perceptron neural network architecture to obtain an overall classification accuracy of 100% for the segmented malignant masses with a false-positive rate of 1.8 per full breast image. This system has a sensitivity of 92% for locating malignant ROI's. The database contains 272 images (12 b, 100 μm) with 36 malignant and 53 benign mass images. The results demonstrate that the MBV approach provides a structured order of integrating complex stages into a system for radiologists  相似文献   

5.
A computer-aided diagnosis (CAD) algorithm identifying breast nodule malignancy using multiple ultrasonography (US) features and artificial neural network (ANN) classifier was developed from a database of 584 histologically confirmed cases containing 300 benign and 284 malignant breast nodules. The features determining whether a breast nodule is benign or malignant were extracted from US images through digital image processing with a relatively simple segmentation algorithm applied to the manually preselected region of interest. An ANN then distinguished malignant nodules in US images based on five morphological features representing the shape, edge characteristics, and darkness of a nodule. The structure of ANN was selected using k-fold cross-validation method with k = 10. The ANN trained with randomly selected half of breast nodule images showed the normalized area under the receiver operating characteristic curve of 0.95. With the trained ANN, 53.3% of biopsies on benign nodules can be avoided with 99.3% sensitivity. Performance of the developed classifier was reexamined with new US mass images in the generalized patient population of total 266 (167 benign and 99 malignant) cases. The developed CAD algorithm has the potential to increase the specificity of US for characterization of breast lesions.  相似文献   

6.
A fully automatic method is presented to detect abnormalities in frontal chest radiographs which are aggregated into an overall abnormality score. The method is aimed at finding abnormal signs of a diffuse textural nature, such as they are encountered in mass chest screening against tuberculosis (TB). The scheme starts with automatic segmentation of the lung fields, using active shape models. The segmentation is used to subdivide the lung fields into overlapping regions of various sizes. Texture features are extracted from each region, using the moments of responses to a multiscale filter bank. Additional "difference features" are obtained by subtracting feature vectors from corresponding regions in the left and right lung fields. A separate training set is constructed for each region. All regions are classified by voting among the k nearest neighbors, with leave-one-out. Next, the classification results of each region are combined, using a weighted multiplier in which regions with higher classification reliability weigh more heavily. This produces an abnormality score for each image. The method is evaluated on two databases. The first database was collected from a TB mass chest screening program, from which 147 images with textural abnormalities and 241 normal images were selected. Although this database contains many subtle abnormalities, the classification has a sensitivity of 0.86 at a specificity of 0.50 and an area under the receiver operating characteristic (ROC) curve of 0.820. The second database consist of 100 normal images and 100 abnormal images with interstitial disease. For this database, the results were a sensitivity of 0.97 at a specificity of 0.90 and an area under the ROC curve of 0.986.  相似文献   

7.
Low-dose helical computed tomography (LDCT) is being applied as a modality for lung cancer screening. It may be difficult, however, for radiologists to distinguish malignant from benign nodules in LDCT. Our purpose in this study was to develop a computer-aided diagnostic (CAD) scheme for distinction between benign and malignant nodules in LDCT scans by use of a massive training artificial neural network (MTANN). The MTANN is a trainable, highly nonlinear filter based on an artificial neural network. To distinguish malignant nodules from six different types of benign nodules, we developed multiple MTANNs (multi-MTANN) consisting of six expert MTANNs that are arranged in parallel. Each of the MTANNs was trained by use of input CT images and teaching images containing the estimate of the distribution for the "likelihood of being a malignant nodule," i.e., the teaching image for a malignant nodule contains a two-dimensional Gaussian distribution and that for a benign nodule contains zero. Each MTANN was trained independently with ten typical malignant nodules and ten benign nodules from each of the six types. The outputs of the six MTANNs were combined by use of an integration ANN such that the six types of benign nodules could be distinguished from malignant nodules. After training of the integration ANN, our scheme provided a value related to the "likelihood of malignancy" of a nodule, i.e., a higher value indicates a malignant nodule, and a lower value indicates a benign nodule. Our database consisted of 76 primary lung cancers in 73 patients and 413 benign nodules in 342 patients, which were obtained from a lung cancer screening program on 7847 screenees with LDCT for three years in Nagano, Japan. The performance of our scheme for distinction between benign and malignant nodules was evaluated by use of receiver operating characteristic (ROC) analysis. Our scheme achieved an Az (area under the ROC curve) value of 0.882 in a round-robin test. Our scheme correctly identified 100% (76/76) of malignant nodules as malignant, whereas 48% (200/413) of benign nodules were identified correctly as benign. Therefore, our scheme may be useful in assisting radiologists in the diagnosis of lung nodules in LDCT.  相似文献   

8.
This pilot study was carried out to find the feasibility of analyzing the maturity of the fetal lung using ultrasound images. Data were collected from normal pregnant women at intervals of two weeks from the gestation age of 24 to 38 weeks. Images were acquired at two centers located at different geographical locations. The total data acquired consisted of 750 images of immature and 250 images of mature class. A region of interest of 64×64 pixels was used for extracting the features. Various textural features were computed from the fetal lung and liver images. The ratios of fetal lung to liver feature values were investigated as possible indexes for classifying the images into those from mature (reduced pulmonary risk) and immature (possible pulmonary risk) lung. The features used are fractal dimension, lacunarity, and features derived from the histogram of the images. The following classifiers were used to classify the fetal lung images as belonging to mature or immature lung: nearest neighbor, k-nearest neighbor, modified k-nearest neighbor, multilayer perceptron, radial basis function network, and support vector machines. The classification accuracy obtained for the testing set ranges from 73% to 96%  相似文献   

9.
A computer-aided diagnosis (CAD) system for the classification of lesions as malignant or benign in automated 3-D breast ultrasound (ABUS) images, is presented. Lesions are automatically segmented when a seed point is provided, using dynamic programming in combination with a spiral scanning technique. A novel aspect of ABUS imaging is the presence of spiculation patterns in coronal planes perpendicular to the transducer. Spiculation patterns are characteristic for malignant lesions. Therefore, we compute spiculation features and combine them with features related to echotexture, echogenicity, shape, posterior acoustic behavior and margins. Classification experiments were performed using a support vector machine classifier and evaluation was done with leave-one-patient-out cross-validation. Receiver operator characteristic (ROC) analysis was used to determine performance of the system on a dataset of 201 lesions. We found that spiculation was among the most discriminative features. Using all features, the area under the ROC curve (A(z)) was 0.93, which was significantly higher than the performance without spiculation features (A(z)=0.90, p=0.02). On a subset of 88 cases, classification performance of CAD (A(z)=0.90) was comparable to the average performance of 10 readers (A(z)=0.87).  相似文献   

10.
巩萍  程玉虎  王雪松 《电子学报》2015,43(12):2476-2483
现有肺结节良恶性计算机辅助诊断的依据通常为肺部CT图像的底层特征,而临床医生的诊断依据为高级语义特征.为克服这种图像底层特征和高级语义特征之间的不一致性,提出一种基于语义属性的肺结节良恶性判别方法.首先,利用阈值概率图方法提取肺结节图像;其次,一方面提取肺结节图像的形状、灰度、纹理、大小和位置等底层特征,组成样本特征集.另一方面,根据专家对肺结节属性的标注,提取结节属性集;然后,根据特征集和属性集建立属性预测模型,实现两者之间的映射;最后,利用预测的属性进行肺结节的良恶性分类.LIDC数据库上的实验结果表明所提方法具有较高的分类精度和AUC值.  相似文献   

11.
Architectural distortion (AD) has been described as a focal retraction of the breast tissue. Blood vessels, milk ducts and spicules in the breast tissue appear as ridges in the mammogram. We hypothesize that radiating ridges are an indicator of an AD site. Using a window-based approach, features derived from the ridges have been utilized in a radial basis function support vector machine to classify regions as containing or not containing AD. The classification is performed on the Mammographic Image Analysis Society (MIAS) database and on the Digital Database For Screening Mammography (DDSM). The proposed approach reports peak performance of a sensitivity of 90% (93%) at 26 (17) false positives per mammogram in the MIAS (DDSM) database.  相似文献   

12.
Tumor vascularity is an important factor that has been shown to correlate with tumor malignancy and was demonstrated as a prognostic indicator for a wide range of cancers. Three-dimensional (3-D) power Doppler ultrasound (PDUS) offers a convenient tool for investigators to inspect the signals of blood flow and vascular structures in breast cancer. In this paper, a new computer-aided diagnosis (CAD) system for quantifying Doppler ultrasound images based on 3-D thinning algorithm and neural network is proposed. We extracted the skeleton of blood vessels from 3-D PDUS data to facilitate the capturing of morphological changes. Nine features including vessel-to-volume ratio, number of vascular trees, length of vessels, number of branching, mean of radius, number of cycles, and three tortuosity measures, were extracted from the thinning result. Benign and malignant tumors can therefore be differentiated by a score computed by a multilayered perceptron (MLP) neural network using these features as parameters. The proposed system was tested on 221 breast tumors, including 110 benign and 111 malignant lesions. The accuracy, sensitivity, specificity, and positive and negative predictive values were 88.69% (196/221), 91.89% (102/111), 85.45% (94/110), 86.44% (102/118), and 91.26% (94/103), respectively. The Az value of the ROC curve was 0.94. The results demonstrate a correlation between the morphology of blood vessels and tumor malignancy, indicating that the newly proposed method can retrieves a high accuracy in the classification of benign and malignant breast tumors.  相似文献   

13.
针对乳腺钼靶图像中良恶性肿块难以诊断的问题,提出一种基于注意力机制与迁移学习的乳腺钼靶肿块分类方法,并用于医学影像中乳腺钼靶肿块的良恶性分类.首先,构建一种新的网络模型,该模型将注意力机制CBAM(Convolutional Block Attention Module)与残差网络ResNet50相结合,用于提高网络对...  相似文献   

14.
Because of the difficulty of specifying general criteria for texture features, automated image analysis in the field of remote sensing has been largely restricted to the spectral domain. An algorithm that integrates spectral and textural information in the classification process is presented. The procedure is capable of classifying a region of arbitrary shape and size and operates effectively near class boundaries. Except for the requirement of user-defined training data, the algorithm can be completely automated. For all accuracy measures tested, the classification accuracy of the spectral texture pattern matching algorithm was higher for most classes than that of the maximum-likelihood classifier. Furthermore, errors with the spectral/textural algorithm are largely confined to omission, which gives a high degree of confidence to the classified pixels  相似文献   

15.
Texture classification is an important application in image processing and pattern recognition such as detection of defects on the materials and diseases from the medical images. This paper presents the performance of wave atom transform on texture classification. Wave atom transform is a new multi-resolution technique that not only captures the coherence of the pattern along the oscillations, but also the pattern across the oscillations. The classification is done using a wave atom–transformed features reduced by singular value decomposition and a support vector machine. Experimental results are presented to demonstrate the effectiveness of this approach on Brodatz database, Alzheimer’s Disease Neuro Imaging database for Alzheimer’s disease classification and liver computed tomography images for tumor classification. The experimental results demonstrate that the proposed approach gives a percent correct classification of 97.29 % on Brodatz database, classification accuracy of 94 % on Alzheimer’s Disease Neuro Imaging database for Alzheimer’s disease diagnosis and 93.3 % on liver computed tomography images for tumor classification.  相似文献   

16.
陈秋霞  向军  刘奇  刘剑 《激光杂志》2014,(3):65-66,69
提取乳腺肿瘤超声图像的肿瘤区域,计算乳腺肿瘤图像的纹理特征参数,研究纹理特征与肿瘤良恶性的关系。基于综合空间灰度共生矩阵计算11个乳腺肿瘤超声图像的纹理特征参数,然后分别利用模糊C均值和K-medoid聚类算法对乳腺肿瘤进行良恶性判别,同时,通过重复实验找到判别肿瘤良恶性的最佳特征参数组合。实验结果表明相关性、和方差、相关信息度量1和相关信息度量2四个特征参数组合的判别结果最好,达到了72.64%。因此,纹理特征在一定程度上能够反映良恶性乳腺肿瘤的区别,其对于鉴别乳腺肿瘤的良恶性是有效的。  相似文献   

17.
Malignant melanoma is the deadliest form of all skin cancers. Approximately 32,000 new cases of malignant melanoma were diagnosed in 1991 in the United States, with approximately 80% of patients expected to survive 5 years. Fortunately, if detected early, even malignant melanoma may be treated successfully, Thus, in recent years, there has been rising interest in the automated detection and diagnosis of skin cancer, particularly malignant melanoma. Here, the authors present a novel neural network approach for the automated separation of melanoma from 3 benign categories of tumors which exhibit melanoma-like characteristics. The approach uses discriminant features, based on tumor shape and relative tumor color, that are supplied to an artificial neural network for classification of tumor images as malignant or benign. With this approach, for reasonably balanced training/testing sets, the authors are able to obtain above 80% correct classification of the malignant and benign tumors on real skin tumor images  相似文献   

18.
Texture classification with kernel principal component analysis   总被引:1,自引:0,他引:1  
Kim  K.I. Jung  K. Park  S.H. Kim  H.J. 《Electronics letters》2000,36(12):1021-1022
Kernel principal component analysis (PCA) is presented as a mechanism for extracting textural information. Using the polynomial kernel, higher order correlations of input pixels can be easily used as features for classification. As a result, supervised texture classification can be performed using a neural network  相似文献   

19.
In this work, a computer-based algorithm is proposed for the initial interpretation of human cardiac images. Reconstructed single photon emission computed tomography images are used to differentiate between subjects with normal value and abnormal value of ejection fraction. The method analyses pixel intensities that correspond to blood flow in the left ventricular region. The algorithm proceeds through three main stages: the initial stage does a pre-processing task to reduce noise as well as blur in the image. The second stage extracts features from the images. Classification is done in the final stage. The pre-processing stage consists of a de-noising part and a de-blurring part. Novel features are used for classification. Features are extracted as three different sets based on: the pixel intensity distribution in different regions, spatial relationship of pixels and multi-scale image information. Two supervised algorithms are proposed for classification: one algorithm is based on a threshold value computed from the features extracted from the training images and the other algorithm is based on sequential minimal optimization-based support vector machine approach. Experimental studies were performed on real cardiac SPECT images obtained from hospital. The result of classification has been verified by an expert nuclear medicine physician and by the ejection fraction value obtained from quantitative gated SPECT, the most widely used software package for quantifying gated SPECT images.  相似文献   

20.
Most existing remote sensing image retrieval systems allow only simple queries based on sensor, location, and date of image capture. This approach does not permit the efficient retrieval of useful hidden information from large image databases. This paper presents an integrated approach to retrieving spectral and spatial patterns from remotely sensed imagery using state-of-the-art data mining and advanced database technologies. Land cover information corresponding to spectral characteristics is identified by supervised classification based on support vector machines with automatic model selection, while textural features characterizing spatial information are extracted using Gabor wavelet coefficients. Within identified land cover categories, textural features are clustered to acquire search-efficient space in an object-oriented database with associated images in an image database. Interesting patterns are then retrieved using a query-by-example approach. The evaluation of the study results using coverage and novelty measures validates the effectiveness of the proposed remote sensing image information mining framework, which is potentially useful for applications such as agricultural and environmental monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号