首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
闫征  李春阳  黄午阳 《中国调味品》2012,37(12):107-110
研究了紫薯汁花色苷在不同pH值(pH 3.0,4.0,5.0)和不同温度(100,80,60℃)处理下的热稳定性,并测定了花色苷热降速率(k),半衰期(t1/2)及热降解活化能(Ea)。热降解动力学数据分析结果表明:紫薯汁花色苷降解遵循一级反应动力学方程,其热降解速率随着pH和温度的升高而增加,热降解活化能随着pH值的升高而降低。同一处理条件下,酶解处理的紫薯汁的半衰期t1/2和热降解活化能Ea值明显高于对照组。而热降速率k小于对照组,说明酶解处理可提高紫薯汁花色苷热稳定性。  相似文献   

2.
贾娜  孔保华  刘骞  陈倩  张红涛 《食品科学》2012,33(21):73-77
通过研究加热温度和加热时间对黑加仑花色苷含量及抗氧化活性的影响,探讨黑加仑花色苷及其抗氧化能力的热稳定性。将黑加仑花色苷提取物在60、80、100℃分别加热1~5h,测定不同加热温度和加热时间下的花色苷含量,分析花色苷热降解动力学;同时测定DPPH自由基清除率、还原能力和ABTS+.清除率,评价花色苷抗氧化能力的热稳定性。结果表明:加热处理会导致花色苷含量显著降低(P<0.05),其降解符合一级动力学反应,随着温度的增加,反应速率常数k增加,半衰期t1/2降低,反应活化能为71.97kJ/mol;随着加热温度的升高和加热时间的延长,花色苷的DPPH自由基清除率、还原能力和ABTS+.清除率均有不同程度的下降。因此,加工过程中应避免长时间、高温处理,以防止花色苷降解,从而保护花色苷的抗氧化活性。  相似文献   

3.
黑米花色苷降解特性研究   总被引:1,自引:2,他引:1  
为了解黑米花色苷在pH、光照及加热条件下的稳定性,明确其贮藏和应用条件,对黑米花色苷的降解特性进行研究.结果表明:常温条件下,黑米花色苷的水解平衡常数pKn约为3.0,pH 1.0~3.0适合色素液的保存.热降解符合动力学一级反应方程.黑米花色苷降解所需的活化能E(pH1.0)、E(pH 3.0)、E(pH4.5)分别为84.05,67.12,51.52 kJ/mol,低pH有利于黑米花色苷的保存.加热温度超过80℃,pH3.0时花色苷的热稳定性最好.温度越高,加热时间越长,黑米花色苷的热降解越快.黑米花色苷的光降解也符合动力学一级反应方程.强日光、自然光、避光条件对花色苷降解的影响有显著差异.pH越大,光照强度越强,光照持续时间越长,花色苷的降解越快.  相似文献   

4.
研究了紫薯花色苷在乳酸、酒石酸、苹果酸、乙酸、柠檬酸体系中的热降解稳定性,通过建立紫薯花色苷热降解动力学模型,分析紫薯花色苷在不同有机酸体系中的热降解速率常数k、半衰期t1/2及热降解活化能Ea,为提高紫薯花色苷的稳定性提供实验参考和理论依据。结果表明:紫薯花色苷的热降解符合一级反应动力学模型,随着温度的升高,紫薯花色苷降解速率明显加快;在有机酸体系中,紫薯花色苷的热降解活化能Ea及半衰期t1/2较空白组均有所提高,即稳定性增强。有机酸辅色后Ea值分别提高了35.71%(酒石酸)、32.06%(乳酸)、20.61%(苹果酸)、12.60%(乙酸)、45.31%(柠檬酸)。其中柠檬酸、酒石酸、乳酸的作用效果较好,可考虑作为辅色剂。  相似文献   

5.
刺葡萄皮花色苷的光热降解特性研究   总被引:2,自引:0,他引:2  
为了解刺葡萄皮花色苷在光照及加热条件下的稳定性,明确其贮藏和应用条件,对刺葡萄皮花色苷的光热降解特性进行研究.结果表明:常温条件下,pH 1~3色素液花色苷稳定性较好;避光及室内自然光照条件下放置20 d内刺葡萄皮花色苷的稳定性无显著差异,但强光条件下,刺葡萄皮花色苷稳定性明显下降;刺葡萄皮花色苷热降解符合动力学一级反应规律,pH为1.0、3.0、4.5时,其热降解活化能Ea分别为99.385 6,83.364 5,73.741 9 kJ/mol,说明低pH条件下,刺葡萄皮花色苷的热稳定性较好,但pH 1.0色素液在≥80 ℃加热时的花色苷半衰期t1/2≤4.10 h,而pH 3.0、4.5色素液在同样加热条件下的t1/2≤14.12 h、13.20 h;高温处理(≥80 ℃)时,pH 3.0的色素液稳定性优于其余pH条件.  相似文献   

6.
为建立草莓浑浊汁花色苷降解动力学模型,在不同pH值、温度和加热时间对草莓浑浊汁花色苷残留率进行测定试验.结果表明:随温度和pH值的升高,其降解速率明显加快,草莓浑浊汁花色苷热降解符合一级动力学反应,在pH值为3.3时,其反应活化能Ea为63.69 kJ/mol,反应常数A为1.24×109,该模型的预测值与实测值的相关系数达0.9876,表明该模型有效.  相似文献   

7.
黑米花色苷在酸性水溶液和10%乙醇溶液中的热降解性质。通过考察黑米花色苷含量在4℃、25℃、80℃和100℃下随时间的变化,通过计算得到黑米花色苷在两种溶液和不同温度条件下的降解速率k、半衰期t_(1/2)、温度系数Q_(10)、活化能Ea。结果表明:黑米花色苷在pH3去离子水和10%乙醇溶液中的热降解规律符合动力学一级反应规律,其热降解速率随温度升高而增大,黑米花色苷在pH 3去离子水溶液中的稳定性优于10%乙醇溶液。  相似文献   

8.
以紫薯酒为原料,探究了紫薯酒中花色苷在不同贮藏温度、p H和光照条件下贮藏的稳定性和降解动力学。结果表明:紫薯酒在贮藏过程中,花色苷受不同温度、p H和光照条件的影响,其降解规律符合一级反应动力学规律,反应速率常数k越大,半衰期t1/2越小。在5℃与25℃条件下较稳定,在37℃极易分解。p H为3.5时,紫薯酒花色苷稳定性最好。紫薯酒花色苷在避光条件下较稳定,在日光灯与室内散射光照射下易分解,在棕色玻璃瓶中贮藏可减少光照对花色苷的降解。因此紫薯酒在贮藏时应尽量保持低温和避光,将p H调整为3.5为宜。  相似文献   

9.
探讨在不同温度和pH条件下紫甘蓝花色苷的热稳定性和降解动力学。以80%乙醇浸提,D-101大孔吸附树脂分离纯化制备紫甘蓝花色苷,在50、60、70、80 ℃温度范围内,于不同pH(2.0~6.0)体系中测定不同时间点的花色苷含量,研究其热降解动力学参数和褐变指数。结果表明,紫甘蓝花色苷热稳定性和褐变反应受温度和pH的影响,且其降解速率与时间呈良好线性关系,符合一级动力学模型。随着温度的升高,不同pH下花色苷的半衰期t1/2均呈下降趋势,最大值为83.51 h(50 ℃,pH3.0),最小值为4.43 h(80 ℃,pH6.0),且各pH(2.0~6.0)体系的活化能Ea依次为42.30、45.31、38.85、26.83、31.20 kJ/mol。此外,其褐变指数随热处理时间延长、温度升高及pH增大而增大。  相似文献   

10.
蔗糖含量对牡丹花色苷热稳定性和降解动力学的影响   总被引:3,自引:0,他引:3  
研究了蔗糖含量对牡丹花色苷热稳定性和降解动力学的影响。结果表明:牡丹花色苷的热降解符合一级反应动力学模型,花色苷半衰期随加热温度升高而缩短;花色苷样品液所含的4 种花色苷中,降解速率依次为矢车菊-3-O- 二葡萄糖>芍药-3-O- 葡萄糖苷>矢车菊-3, 5-O- 二葡萄糖苷>芍药-3, 5-O- 二葡萄糖苷;花色苷样品液的褐变指数随加热温度的升高和加热时间的延长而增大。蔗糖抑制了花色苷的降解,表现为提高了花色苷样品液的吸光度,降低了褐变指数;抑制程度与蔗糖浓度、加热处理的时间和温度有关;但含糖体系花色苷的热降解不符合一级反应动力学。  相似文献   

11.
以新疆伊犁熏衣草为研究对象,通过单因素实验和响应面试验研究超声辅助酶法提取薰衣草花色苷,确定最佳工艺条件为:在果胶酶质量分数为0.10%、pH3、乙醇浓度50%、酶解温度50℃、酶解时间62 min、超声时间25 min,该条件下薰衣草花色苷得率为6.22%,较单一超声提取法相比,超声辅助酶法具有明显的优势。通过对不同pH和温度下薰衣草花色苷稳定性的研究发现,不同pH下薰衣草花色苷热降解符合一级动力学方程;在相同pH下,花色苷降解所需要的能量势垒大小与温度无关;薰衣草花色苷热稳定性较差,当pH6.0时,其对热最为敏感,pH1.0时,其热稳定性最强。  相似文献   

12.
为解决脱水紫薯贮藏期品质下降的问题,研究了贮藏温度及包装材料对其品质的影响以延长货架期。采用铝箔、塑料两种材料分别包装脱水紫薯后避光贮藏,置于低温、室温储藏室。检测花色苷、水份活度、复水比以及非酶褐变的变化情况。结果显示,四种组合方式的脱水紫薯品质均发生不同程度的下降,花色苷降解符合一级动力学反应。其中低温铝箔包装的脱水紫薯品质保持最好,其花色苷残留量最高,一级动力学降解速率常数k最小,水份活度上升幅度小、复水比及非酶褐变的变化最小,室温铝箔包装次之,塑料包装的脱水紫薯品质变化最大。综上所述,低温、铝箔包装材料可减缓脱水紫薯贮藏期间品质的劣变。  相似文献   

13.
以蓝莓花色苷为原料,采用pH示差法测定了不同pH值、温度、光照强度、氧化剂和还原剂对花色苷稳定 性的影响。结果表明:不同pH值下花色苷热降解符合一级动力学方程,强酸性条件下蓝莓花色苷的热稳定性强于 弱酸和中性;花色苷的热稳定性差,随着温度升高,花色苷的降解速率k明显增大,降解半衰期和递减时间D值明 显减小,pH 6.0时活化能最小,为44.77 kJ/mol,pH 1.0时活化能最大,为83.73 kJ/mol,热降解反应为吸热非自发反 应;光照和H2O2会加快蓝莓花色苷的降解,花色苷在光照和H2O2处理条件下降解均符合一级动力学方程,在光照条 件下的降解速率为0.014 8 d-1,半衰期为47 d,花色苷降解速率随着H2O2体积分数的升高明显增加;此外,质量分 数0.20% Na2SO3对花色苷的降解起到抑制作用,而质量分数0.05%、0.10%、0.15% Na2SO3会促进花色苷降解反应。  相似文献   

14.
蓝靛果汁花色苷热降解动力学的研究   总被引:1,自引:0,他引:1  
以新榨蓝靛果汁为试材,采用控制温度、调节pH值、连续充N2等方法,探讨蓝靛果汁花色苷的热降解动力学,为深加工条件的优化控制及保质期的预测提供科学的依据。结果表明:蓝靛果花色苷对热不稳定,花色苷的降解过程符合一级动力学反应。随着pH值和温度的升高,蓝靛果花色苷的热降解半衰期(t1/2)和活化能(Ea)显著下降,研究表明充氮气处理可以提高蓝靛果花色苷的稳定性。  相似文献   

15.
本研究通过高效液相色谱-串联质谱(high performance liquid chromatography-tandem mass spectrometry,HPLC-MS/MS)法分析鉴定‘鄂薯12号’紫薯的花色苷成分,采用pH示差法和HPLC法研究该紫薯花色苷提取液在4、20、35 ℃贮藏98 d期间总花色苷和各单体花色苷的变化规律,并在此基础上研究了花色苷的降解动力学以及褐变指数和聚合物颜色指数。结果表明:从‘鄂薯12号’紫薯提取物中鉴定出13 种花色苷,主要为矢车菊素-3-槐糖苷-5-葡糖苷和芍药素-3-槐糖苷-5-葡糖苷与对羟基苯甲酸、阿魏酸或咖啡酸形成的酰基化花色苷;贮藏期间总花色苷和各单体花色苷的含量呈下降趋势,花色苷的降解符合一级动力学模型;4、20 ℃和35 ℃贮藏条件下总花色苷半衰期分别为228.8、48.1 d和32.6 d;在相同糖苷配体情况下,矢车菊素类花色苷的半衰期要短于芍药素;在相同花色素配体情况下,酰基化花色苷的半衰期要长于未酰基化花色苷,且二酰化花色苷的半衰期长于单酰化花色苷;褐变指数和聚合物颜色指数随贮藏时间的延长和贮藏温度的升高而增大,并且聚合物颜色指数与花色苷含量之间呈指数关系。  相似文献   

16.
在不同pH、温度和光照条件下研究了单宁酸对紫玉米芯花色苷稳定性的影响。结果表明,在pH 4.0条件下,单宁酸对紫玉米芯花色苷的向红效应(Amax)和增色效应(λmax)的效果要好于pH 3.0条件下。与对照相比,同一温度和光照条件下添加单宁酸的紫玉米芯花色苷降解速率低,半衰期长,耐热和光性好。单宁酸能增强花色苷对光、热的稳定性,对紫玉米芯花色苷有辅色作用。  相似文献   

17.
花色苷的热稳定性及其影响因素研究   总被引:1,自引:0,他引:1  
花色苷是优良的天然植物源色素,同时具备抗氧化、抗肿瘤等重要生理功能。花色苷的热稳定性是影响其在食品工业中应用的主要因素,本文对花色苷的热降解动力学和热降解影响因素进行了综述。花色苷在食品中的热降解动力学均为一级动力学,影响其降解的主要因素包括pH、压强、温度、糖类、黄酮类物质、抗坏血酸类及其自身的酰基化程度。  相似文献   

18.
以笃斯越橘为原料,主要测定其花色苷精制物在121℃加热6、8、10min及不同pH下花色苷含量、抗氧化活性的变化。结果表明:处理液中单体花色苷、辅色花色苷、聚合花色苷和总花色苷含量随着加热时间增加及pH升高大体都呈下降趋势,辅色花色苷在pH4.0~5.0时有微量的存在。花色苷残留率随加热时间增加、pH升高而降低。DPPH·法结果表明,同一pH条件下,处理液对DPPH·清除能力为加热6min8min10min;3个时间下的处理液清除能力均在pH1.0时达到最佳,且其IC50值分别为1.50、2.94、3.40μg/mL。ABTS+·法结果表明,pH1.0、121℃加热6、8、10min下,处理液的IC50值分别为0.27、0.29、0.32μg/mL;处理液的清除能力整体随加热时间增加、pH升高而降低。  相似文献   

19.
目的:建立一种紫薯花色苷的提取和检测方法并研究紫薯花色苷的抗氧化活性,从而为紫薯花色苷的推广和应用提供数据支撑.方法:采用加热回流法进行提取,经AB-8型大孔树脂纯化后使用多功能酶标仪检测紫薯花色苷的含量,运用DPPH自由基、超氧阴离子的清除力测试及关于ABTS+·的还原力分析研究紫薯花色苷的抗氧化性能.结果:紫薯花色...  相似文献   

20.
紫薯花色苷色素抑菌作用的探究   总被引:1,自引:0,他引:1  
采用牛津杯法探究紫薯花色苷色素对伤寒沙门氏菌、福氏志贺氏菌、鼠李糖乳杆菌、植物乳杆菌、酵母菌、黑曲霉的作用效果以及p H、温度、紫外光照、微波加热处理对其抑菌效果的影响。结果表明,紫薯花色苷色素对伤寒沙门氏菌和福氏志贺氏菌有明显的抑菌效果,最小抑菌浓度为0.55 mg/m L;对鼠李糖乳杆菌、植物乳杆菌、酵母菌、黑曲霉生长无抑制作用;p H<3时,紫薯花色苷抑菌效果最好;高温处理会使紫薯花色苷的抑菌作用减弱;紫外光照射对紫薯花色苷的抑菌作用没有影响;微波短时处理使紫薯花色苷的抑菌作用有所增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号