首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The moisture sorption isotherm data of walnut kernels stored in a chamber, the relative humidity (r.h.) of which is regulated by atomizing humidifier, were determined at three different temperatures (25, 35 and 45 °C) and r.h. ranging from 10% to 90%. Eight models, namely the GAB, BET, Henderson, Iglesias and Chirife, Oswin, Peleg, Smith and Caurie equations, were fitted to the sorption data. Several statistical tests were adopted as the criteria to evaluate the fitting performance of the models. Of the models tested, the Peleg model gave the best fit to experimental data. The surface area of a monolayer was calculated. The BET equation was applied to the monolayer moisture content and the corresponding aw values at which a monolayer forms are presented. The experimental data were also used to determine the thermodynamic functions such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. The sorption isosteric heats for walnut kernels were determined by the application of the Clausius-Clapeyron equation to sorption isotherms obtained from the best-fitting equation. Isosteric heats decreased with increase in moisture content and approached the latent heat of pure water. Adsorption entropy increased with increasing moisture content, and then it decreased sharply with increase in moisture content. The spreading pressures (adsorption and desorption) increased with increasing water activity. Net integral enthalpy of adsorption increased slightly with moisture content to a maximum value. Thereafter, it remained constant. Net integral entropy of adsorption was negative in value and it decreased with increase in moisture content to a minimum value, and then increased slightly with increase in moisture content.  相似文献   

2.
Water sorption isotherms of fried yam chips were determined using a static gravimetric method with saturated salt solutions in the range of water activity between 0.22 and 0.85 at 293, 303 and 313K. Four sorption models namely GAB, Peleg, modified Mizrahi, and BET were fitted with the sorption data generated. The GAB model followed by Peleg and modified Mizrahi models were found to best represent the experimental data in the aw range of 0.22–0.85. However, the BET model was more applicable between aw range of 0.22–0.55. The adsorption isotherm of fried yam chips clearly showed the influence of temperature, decreasing the moisture content at a fixed water activity value with higher temperature. The net isosteric heats of sorption of water were estimated by applying the Clausius–clapeyron equation to the adsorption isotherms at different temperatures. The net isosteric heat of sorption was observed to be decreasing as moisture content increases. Samples stored in desiccators of 0.44 and 0.55 aw at 303 and 313K, respectively, were rated higher in terms of textural properties investigated.  相似文献   

3.
A thermodynamic approach was used to interpret the experimental adsorption and desorption isotherm data for potato starch gel. Calculation of the thermodynamic properties (differential enthalpy, integral enthalpy, differential entropy and integral entropy) provides an understanding of the properties of water and energy requirements associated with the sorption behavior. Isosteric heats (differential enthalpies) were calculated through direct use of moisture isotherms by applying the Clausius‐Clapeyron equation. the differential enthalpy and entropy decreased with increasing moisture content and were adequately characterized by an exponential model. A plot of differential heat versus entropy satisfied the enthalpy‐entropy compensation theory. the spreading pressure increased with increasing water activity, and decreased with increasing temperature. the net integral enthalpy increased with moisture content to a maximum value (around the monolayer moisture content) and then decreased. In a reverse manner, the net integral entropy decreased with moisture content to a minimum value and then increased.  相似文献   

4.
为了给方便米粉的加工和贮藏过程提供理论指导,根据吸附原理,在环境温度分别为15、25 ℃和35 ℃时,采用静态称量法研究方便米粉的吸附等温线。采用7 个常见的非线性回归方程对吸附实验进行拟合,以决定系数、平均相对偏差和标准估计误差为评价指标,确定最佳拟合模型及其参数,探讨方便米粉水分吸附过程中净等量吸附热、微分吸附熵和焓熵互补等热力学性质的变化。结果表明,方便米粉的水分吸附特性属于II型等温线,Peleg和GAB模型都适合描述方便米粉的水分吸附特性。用GAB模型拟合得到的单分子层水分含量X0在15、25 ℃和35 ℃下分别为9.23%、8.34%和7.65%(干基)。在水分吸附过程中,方便米粉的净等量吸附热和微分吸附熵都会随着平衡水分含量的升高而明显下降;同时,存在焓熵补偿现象;根据实验结果绘制净等量吸附热与微分吸附熵的关系图,计算获得方便米粉的吸附过程属于焓驱动和自发过程。本研究对方便米粉贮藏条件选择和进一步评估不同贮藏条件下方便米粉的贮藏期具有指导作用。  相似文献   

5.
The aims of this work were to determine chemical composition and sorption isotherms of Tunisian orange peel and leaves of the “Maltaise” variety. These by-products were found to be rich in fibre, soluble sugars, protein, minerals and phenols. The equilibrium moisture contents of “Maltaise” peel and leaves were measured using the static gravimetric method at three temperatures (40, 50 and 60 °C) and in wide range of water activity (0.109–0.891). Desorption and adsorption data of peel and leaves were best fitted by the Peleg model at 40, 50 and 60 °C. The net isosteric heats of desorption and adsorption were determined from sorption isotherms. For both peel and leaves, the net isosteric heat of desorption was higher than the net isosteric heat of adsorption and both decreased continuously with increasing of the equilibrium moisture content.  相似文献   

6.
Moisture sorption isotherms of Turkish delight were determined using the gravimetric static method of saturated salt solutions at 10, 20 and 30C. Isotherms were found to be of type III, typical of high sugar foods. The effect of temperature on moisture content was not significant (P>0.05). The sorption isotherms exhibited hysteresis at low water activities (aw < 0.5). At higher water activities the moisture content increased sharply as the temperature was increased, resulting in crossing of the isotherm curves at 0.65 water activity. Six models namely the BET, the GAB, the Halsey, the Henderson, the Chung & Pfost and the Iglesias & Chirife were evaluated to determine the best fit for the experimental data. The GAB and the Iglesias & Chirife models fitted well the data of Turkish delight in the temperature and water activity range investigated. However, the GAB model was not appropriate for the estimation of monolayer value. The Clausius-Clapeyron equation was used to examine the isosteric heats of sorption.  相似文献   

7.
ABSTRACT: The net isosteric heat and entropy of water sorption were calculated for plum, based on sorption isotherms obtained by the static gravimetric method at different temperatures (20 to 70 °C). The Guggenheim-Andersonde Boer model was applied to the experimental data giving a good agreement between experimental and calculated values. The net isosteric heat of water sorption, estimated by applying Claussius-Clapeyron equation to sorption isotherms, was found to be different for plum skin and pulp, mainly at low moisture contents, and could be well adjusted by an empirical exponential relationship. Plots of enthalpy in contrast to entropy provided the isokinetic temperatures for skin and pulp, indicating an enthalpy-controlled sorption process. Thermodynamic data on water sorption for plums are not found in literature, as opposed to prunes for which the data are abundant.  相似文献   

8.
Moisture adsorption isotherms of colostral whey (CW) powders with different additives (maltodextrin and sucrose) were determined using gravimetric static method at 15–35 °C in the water activity range of 0.067–0.76. The moisture adsorption isotherms obtained were typical sigmoid curves, and the modified‐Halsey and Guggenheim–Anderson–de Boer (GAB) equations gave the best fit to experimental data among five well‐known equations. Addition with maltodextrin into CW powders could effectively decrease equilibrium moisture content (EMC), whereas addition with sucrose increased EMC in the water activity of 0.43–0.76 at 15 and 25 °C and in the water activity of 0.21–0.76 at 35 °C, respectively. Thermodynamic properties including net isosteric heat of sorption and differential entropy were determined from adsorption data using Clausius–Clapeyron equation. The results showed that net isosteric heat of sorption of all the samples decreased exponentially with increasing EMC. Enthalpy–entropy compensation theory was applicable for adsorption process of all the samples, and the adsorption processes were enthalpy‐driven.  相似文献   

9.
The sorption isotherms of blueberry variety O'Neil were determined at 20, 40 and 60 °C, for a range of water activity of 0.10–0.95. The isotherms showed that the equilibrium moisture content increased when temperature decreased at constant water activity. The BET, GAB, Halsey, Henderson, Caurie, Smith, Oswin and Iglesias-Chirife equations were tested for modelling the sorption isotherms. The results showed that GAB, BET and Halsey models gave the best fit quality for the experimental desorption data, and BET, Oswin and Henderson for adsorption data as suggested by the statistical tests employed. The net sorption heat was calculated using the Clausius–Clapeyron equation giving 38.62 kJ mol−1 (desorption) and 30.88 kJ mol−1 (adsorption) at a moisture content of 0.01 g water (g d.m.−1). Tsami equation was applied to estimate the net isosteric heat of sorption as function of equilibrium moisture content with satisfactory results.  相似文献   

10.
Moisture sorption isotherms and thermodynamic properties of cassava starch and soy protein concentrate–based edible films were investigated. Equilibrium moisture content was determined at various temperatures (10, 20, 30 and 40 °C) and relative humidities (17–83%) using gravimetric method, and the results were analysed using four sorption isotherm models. The equilibrium moisture of edible films (both adsorption and desorption modes) decreased with soy protein concentrate addition and temperature at constant water activity. The monolayer moisture content values of cassava starch–soy protein concentrate edible films decreased with increase in temperature and soy protein level. GAB and Oswin models (%RMS ≤10) best described the isotherms of the biofilms with the monolayer moisture contents, isosteric enthalpy and entropy higher for adsorption with significant kinetic compensations. The moisture sorption and thermodynamic properties of cassava starch–soy protein concentrate edible films showed that they are suitable for packaging applications.  相似文献   

11.
A procedure based on thermal analysis thermogravimetry (TG) and differential-scanning calorimetry (DSC) was examined to compute isosteric heat of sorption for water. DSC measurements on samples with different moisture content allowed determining enthalpy variations due to water vaporization. Thermogravimetries performed on the same samples enabled a link to be made between enthalpic measurements and weight losses and thus compute isosteric heats. The procedure was applied to cauliflower and potato starch. From equilibrium isotherms by applying the Clausius-Clapeyron equation, the isosteric heats of sorption were calculated. The comparison of the values obtained through both procedures showed a good agreement.  相似文献   

12.
The seeds of Araucaria angustifolia, commonly known as pinhão, are widely consumed in both Southern and Southeastern Brazil due to their high nutritious value comprised basically by starch. The literature on the technological aspects of this seed is still very scarce. Moisture adsorption isotherms of pinhão starch were determined at 10, 20, 30 and 40 °C using the gravimetric method. Results show that the Peleg model most appropriately represents the experimental data. Other models (Chung–Pfost, GAB, Henderson, BET and Chirife) also were found to adjust well. The isosteric heat of sorption (differential enthalpy) was calculated by using the moisture adsorption isotherm and decreased as moisture content increased. The enthalpy–entropy compensation theory was applied to adsorption isotherms and the isokinetic temperature for pinhão starch was calculated by plotting the differential enthalpy versus differential entropy. It was found that the adsorption process investigated was enthalpy-controlled and spontaneous.  相似文献   

13.
Prateek Sharma  A.K. Singh  G.R. Patil 《LWT》2009,42(1):441-445
Basundi mix representing powdered Basundi (an Indian traditional milk product somewhat similar to sweetened condensed milk) is a convenience product developed for enhanced shelf life at ambient temperature. Water sorption isotherms were obtained for this ready-to-use mix over the temperature range of 5-45 °C. There was definite inversion of the temperature effect at high water activity (>0.7). GAB model gave excellent agreement between experimental and predicted values. Other properties of sorbed water viz., monolayer water, number of adsorbed monolayers, density and amount of bound water and surface area of adsorption were also obtained. The net isosteric heat of sorption had strong dependence on moisture content. The enthalpy-entropy compensation suggested that the sorption mechanism involved is enthalpy driven over the entire range of moisture content studied.  相似文献   

14.
Kabil E  Aktaş N  Balcı E 《Meat science》2012,90(4):932-938
Moisture desorption isotherms of beef were determined in the relative humidity range of 23 to 90% at 5, 15 and 25 °C and at 2.5% NaCl and 2.5% NaCl + 150 ppm NaNO2 content. Desorption isotherms were found to be typical type II sigmoid. The water content at equilibrium was higher in beef with NaCl and NaCl + NaNO2 than control samples. Experimental data were fitted to various mathematical models and it was found that the Peleg model was best in describing the equilibrium moisture content relationship for beef samples over the entire range of temperatures. The net isosteric heat of sorption was estimated from equilibrium desorption data, using the Clausius-Clapeyron equation. Isosteric heats of desorption were found to increase with decreasing moisture content.  相似文献   

15.
Moisture sorption isotherms of blanched and unblanched mushrooms over 0.11–0.75 aw were determined at 27°C and 37°C by using the static gravimetric method. Adsorption and desorption behaviors of blanched and unblanched mushrooms were compared. The unblanched material adsorbed more water than that of the blanched. In desorption isotherms, the equilibrium moisture contents of the unblanched material were found to be higher than those of the blanched throughout the entire aw range. The BET equation was tested to fit the experimental moisture sorption data over the 0.11–0.43 aw, 0.11–0.55 aw, 0.11–0.64 aw, and 0.11–0.75 aw. Nonlinear regression analysis was used for the determination of the parameters in the equation. The quality of the fit of the BET model over each aw range was judged from the value of the relative percent root mean square (% RMS). The moisture sorption behavior over 0.11–0.43 aw of mushrooms has indicated that the BET equation is applicable generally up to 0.43 aw. Monolayer moisture contents and C constants in the BET equation obtained for each aw interval were reported. The water activities corresponding to the monolayer values have been determined and discussed related to mushroom storage. The net isosteric heats of adsorption and desorption were estimated from equilibrium sorption data, using the integrated form of the Clausius-Clapeyron equation. The heats of adsorption/desorption decreased with increase in moisture content and approached to a constant value. It was concluded that moisture adsorption/desorption occurred by physical mechanisms at high moisture contents, but at low moisture contents, besides physical adsorption, chemisorption was also observed.  相似文献   

16.
为了解花生壳与花生仁的含水率、水分活度(a_w)与温度的关系,提高花生的贮藏稳定性。研究花生壳与花生仁在10、20、30℃时的吸附等温线;探讨花生壳与花生仁的净等量吸附热(q_(st))、微分熵(S_d)、扩张压力、积分熵、积分焓、熵-焓互补、玻璃化转变温度(T_g)等热力学特性。结果表明,花生壳与花生仁的水分吸附呈Ⅲ型等温线。温度一定时,花生壳与花生仁的干基含水率随a_w增加而增加。描述花生壳与花生仁吸附特性的最适模型为GAB模型。花生壳与花生仁的q_(st)与S_d均随含水率增加而降低。扩张压力随a_w增加而升高,但随温度升高而降低。积分焓随含水率增加而降低,而积分熵随含水率增加而升高。花生壳的q_(st)和S_d均高于花生仁,而同一温度条件下花生仁的扩张压力高于花生壳。含水率相同时,花生仁积分焓低于花生壳,而花生仁的积分熵则高于花生壳。花生壳与花生仁水分吸附过程均为焓驱动、自发过程。花生壳与花生仁的T_g随含水率增加而降低,相同含水率时,花生壳的T_g值高于花生仁。根据状态图得到温度为10℃时,花生壳与花生仁的临界水分活度与临界含水率分别为0.80、0.175 4 g/g与0.68、0.095 5 g/g。研究结果可为花生干制工艺及其干制品贮藏稳定性提供理论依据。  相似文献   

17.
Jun Ho Lee  Min Ji Lee 《LWT》2008,41(8):1478-1484
Moisture sorption isotherms of Inonotus obliquus mushroom were studied over a selected temperature range (20-50 °C). Sigmoid sorption isotherms were observed for these samples. The sorption data were analyzed using various conventional models. The Oswin model was found to be the best model for predicting the equilibrium moisture content of mushroom in the range of water activity 0.08-0.96. The monolayer moisture content decreased as temperature increased and was affected by the drying method used. The net isosteric heat of sorption was determined using the Clausius-Clapeyron equation and the value decreased with increase in moisture content of mushroom.  相似文献   

18.
考察魔芋葡甘聚糖(KGM)及其衍生物魔芋超强吸水剂(KSAP)的吸湿、保湿性能,并与甘油、丙二醇进行对比。测定KGM 和KSAP 的水分吸附等温线,采用回归分析建立数学模型。结果表明:KSAP 的吸湿、保湿性能优于甘油和丙二醇。水分吸附等温线属于第Ⅲ型,在给定的水分含量下,KSAP 的水分活度最低,保湿性能最好。Peleg 模型拟合效果最好,BET 模型和GAB 模型拟合显示KSAP 的单分子层水分含量最高,分别为14.59%和15.42%。  相似文献   

19.
Jong-Whan  Rhim  Jun Ho  Lee 《Journal of food science》2009,74(9):E502-E511
ABSTRACT:  Adsorption isotherms of 3 selected paper-based packaging materials, that is, vegetable parchment (VP) paper, Kraft paper, and solid-bleached-sulfate (SBS) paperboard, were determined at 3 different temperatures (25, 40, and 50 °C). The GAB isotherm model was found to fit adequately for describing experimental adsorption isotherm data for the paper samples. The monolayer moisture content of the paper samples decreased with increase in temperature, which is in the range of 0.0345 to 0.0246, 0.0301 to 0.0238, and 0.0318 to 0.0243 g water/g solid for the MG paper, the Kraft paper, and the SBS paperboard, respectively. The net isosteric heats of sorption ( qst ) for the paper samples decreased exponentially with increase in moisture content after reaching the maximum values of 18.51, 27.39, and 26.80 kJ/mol for the VP paper, the Kraft paper, and the SBS paperboard, respectively, at low-moisture content. The differential enthalpy and entropy of 3 paper samples showed compensation phenomenon with the isokinetic temperature of 399.7 K indicating that water vapor had been adsorbed onto the paper samples with the same mechanism. Depending on the paper material, tensile strength of paper samples was affected by moisture content.  相似文献   

20.
Experimental data on sorption isotherms of gari and winged bean seeds were used to determine their thermodynamic functions (heat of vaporization, spreading pressure, net integral enthalpy and entropy). The heat of vaporization of both products reduced with increase in moisture content and approached that of saturated water at moisture contents of about 15%. Within the moisture content range of 2.0 and 18.0%, the net integral enthalpy and net integral entropy of gari were respectively higher and lower than those of winged bean seeds. The maximum net integral enthalpy for gari was 556 kJ/kg and was 335 kJ/kg for winged bean seeds. The difference in the values of the thermodynamic functions were attributed to the higher amount of oil/fat in winged bean seeds and the presence of gelatinized starch in gari.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号