首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Electrochromic (EC) “smart” windows for buildings represent an effective way to modulate the intensity of incoming solar radiation. While it is accepted that WO3 films represent the best option for the working electrode, the choice of the best counter-electrode is still debatable. Optical properties of counter-electrodes such as Ce, Fe, V and Sn oxides are presented. Electrochromic windows were made with a sol–gel WO3 active colouring film (150°C), Ce, Fe, V oxide counter-electrodes and a sol–gel organic–inorganic hybrid (Li+ormolyte) ion conductor. The electrochromic responses of these devices predicted from the charge capacities, photopic transmittances and coloration efficiencies of individual films are compared with measured values.  相似文献   

2.
Mixed CeO2–TiO2 coatings synthesized by sol–gel spin coating process using mixed organic–inorganic Ti(OC3H7)4 and CeCl3·7H2O precursors with different Ce/Ti mole ratios were investigated by a wide range of characterization techniques. The attempts were directed towards achieving coatings with high transparency in the visible region and good electrochemical properties. Elucidation of the structural and optical features of the films yielded information on the aspects relevant to their usage in transmissive electrochromic devices. The films have been found to exhibit properties for counter electrode in electrochromic smart windows in which they are able to retain their transparency under charge insertion, high enough for practical uses. The high optical modulation and fastest switching for WO3 film in the device configuration with the Ce/Ti (1:1) film is interpreted in terms of conducive microstructural changes induced by addition of TiO2 in an amount equivalent to CeO2.  相似文献   

3.
 There is a considerable interest in the research and development of materials and devices, that can be used for optical switching of large-scale glazings. Several potential switching technologies are available for glazings, including those based on electrochromic, thermochromic and photochromic phenomena. One of the most promising technologies for optical switching devices is electrochromism (EC). In order to improve the electrochromic properties of tungsten oxide, we have investigated the effect of phosphorous insertion on the electrochromic behavior of oxide films prepared by the sol–gel process.The kinetics and thermodynamics of electrochemical intercalation of lithium into LixWO3 and LixWO3:P films prepared by the sol–gel process were investigated. The standard Gibbs energy for lithium intercalation was calculated. The chemical diffusion coefficients, D, of lithium intercalation into oxide, were measured by galvanostatic intermittent titration technique (GITT), as functions of the depth of lithium intercalation.  相似文献   

4.
Niobium oxide films are promising cathodic electrochromics that in many aspects can compete with the more frequently studied WO3 films. The films reported herein were prepared using the sol–gel route from a NbCl5 precursor. The electrochromic properties were pronounced for crystalline films heat-treated at 500°C and exhibited transmittance changes between coloured and bleached states of 60% in the ultraviolet (UV) and 80% in the visible (VIS) and near-infrared (NIR) regions. Improved bleaching and more reversible electrochromism of thick niobium oxide films (thickness (d)>250 nm) were obtained by lithiation.Electrochromic (EC) devices were also prepared by assembling niobium oxide and lithiated niobium oxide films of different thicknesses with a hybrid inorganic/organic Li+ ionic conductor (organically modified electrolyte-ormolyte) and a molybdenum and antimony doped tin oxide (SnO2 : Sb(7%) : Mo(10%) counter electrode films. The EC devices exhibited adequate colouring/bleaching kinetics (<2 min) and colouring/bleaching changes up to 40–50%.  相似文献   

5.
CeO2–TiO2–ZrO2 thin films were prepared using the sol–gel process and deposited on glass and ITO-coated glass substrates via dip-coating technique. The samples were heat treated between 100 and 500 °C. The heat treatment effects on the electrochromic performances of the films were determined by means of cyclic voltammetry measurements. The structural behavior of the film was characterized by atomic force microscopy and X-ray diffraction. Refractive index, extinction coefficient, and thickness of the films were determined in the 350–1000 nm wavelength, using nkd spectrophotometry analysis.Heat treatment temperature affects the electrochromic, optical, and structural properties of the film. The charge density of the samples increased from 8.8 to 14.8 mC/cm2, with increasing heat-treatment temperatures from 100 to 500 °C. It was determined that the highest ratio between anodic and cathodic charge takes place with increase of temperature up to 500 °C.  相似文献   

6.
This study presents results on technology and characterization of molybdenum oxide, tungsten oxide and mixed oxide films based on Mo and W. These films were deposited by low-temperature carbonyl CVD process at atmospheric pressure and by simplified sol–gel method using spinning and spraying approaches. The obtained films were structurally and optically investigated. The films show good optical quality with optical transmittance of about 70% in the visible spectral range. Cyclic voltammograms as well as the transmittance modulation at different wavelengths in the visible spectral range were measured to characterize the electrochromic behaviour of the films. The colour efficiencies of the optimized films are in the order of 110–115 cm2/C, in case of spray deposited WO3-sol–gel films—130 cm2/C.  相似文献   

7.
Amorphous Ta2O5 films were prepared by sol–gel dip process on different substrates. The dip-coating technique was used to prepare amorphous Ta2O5 films by hydrolysis and condensation of tantalum ethoxide, Ta(OC2H5)5, precursor. Stable coating solutions were prepared using acetic acid as a chelating ligand and catalyzer. Single layer and multi-layered Ta2O5 films were fabricated at a dipping rate of 107 mm/min. The microstructure, stoichiometry and optical properties of these films were investigated as a function of the film thickness. Room temperature CV measurements clearly revealed a protonic conductor behavior for Ta2O5 films. Optical properties such as refractive index, extinction coefficient and optical band gap value of the Ta2O5 films were calculated from optical transmittance measurements. It was found that the refractive index and extinction coefficient values were affected by the thickness of the coatings. The refractive index at a wavelength of 550 nm increased from 1.70 to 1.72 with increasing film thickness. The optical band gap value (3.75±0.12 eV) of the coating was unaffected by the film thickness. These results indicate that sol–gel-deposited Ta2O5 films have a promising application as proton conductors in electrochromic devices.  相似文献   

8.
An alcohol based sol–gel process involving cerium chloride heptahydrate and citric acid in different mole ratios has been employed for the deposition of CeO2 films. The structural, electrochemical, and optical properties of the films have been investigated using a wide range of techniques. Differential thermal analysis has shown the onset of crystallization of CeO2 at 389 °C. The addition of an additive (citric acid) to the precursor sol has led to homogeneity and also a reduced ion storage capacity in the films. This observation emphasizes on the use of optimum content of the citric acid such that the films are suitable in terms of transparency as well as uniformity characteristics and also exhibit good electrochemical response. As is evidenced by the SEM study, the degree of polycrystalline grain formation in the citric acid derived films is observed to be less. The XPS results have confirmed the presence of Ce4+ state in the films. The optically passive behavior of the films is affirmed by their negligible transmission modulation upon Li ion insertion and extraction. A higher proportion of citric acid has also resulted in a reduced porosity and diminished crystallite size of the cerianite phase. The effect of the CeO2 films on the switching kinetics of the tungsten oxide (WO3) films has revealed an increase in the coloration time of the latter with the diminished crystallite size of CeO2 nanograins in the former.  相似文献   

9.
Metal oxide films are important for various optical devices and especially for solar energy materials. TiO2-mixed Nb2O5 thin films have been produced by sol–gel dip-coating method. Several parameters such as heat treatment, thickness, and mixture percentages are studied for the effect of the optical, structural and electrochromic properties of the materials. Optical parameters of the films were calculated through transmission and reflection measurement by a refractive index, extinction coefficient and thickness analyzer. Structural, electrochromic and surface analyses of the films were done by X-ray diffractometer, potentiostat/galvanostat and atomic force microscope systems.  相似文献   

10.
The development of TiO2 photoelectrochemical cells is largely dependent on the elaboration of efficient dyes molecules to sensitize the nanocrystalline titania surfaces. In the present work, a new system functioning on this basis is proposed: an Ru(II) complex bearing two triphenylphosphine (PPh3) and one 2,2′-bipyridyl-4,4′-dicarboxylate (dcbipy) chromophoric ligands, deposited on TiO2 prepared through a simple sol–gel process is tested in a wet regenerative photoelectrochemical cell. The grafting of the complex on TiO2 surface is characterized using Raman spectroscopy. The measurement of the full-width at half-maximum (FWHM) of the TiO2 lower frequency Eg Raman line allowed to compare the crystallite sizes of the sol–gel films (13–14 nm) with those of nanocrystalline anatase films (7–8 nm). Very intense Raman bands were observed (ex situ and in situ) for the Ru(PPh3)2(dcbipy)Cl2 complex chemisorbed on TiO2. The most important vibrations were unambiguously assigned to the PPh3 or to dcbipy ligands. Altering the potential applied to the electrode for a given laser excitation energy can selectively enhance the vibrational modes of PPh3. A reversible shift of the dcbipy Raman lines was also observed. The electronic absorption spectrum and the electrochemical data are taken into account in order to explain the obtained results for the chemisorbed dye on both nanocrystalline and sol–gel films.  相似文献   

11.
A simple method was developed to fabricate tungsten oxide (WO3−x) nanowires based electrochromic devices. The WO3−x nanowires are grown directly from tungsten oxide powders in a tube furnace. The WO3−x nanowires have diameters ranging from 30 to 70 nm and lengths up to several micrometers. The WO3−x nanowires based device has short bleach-coloration transition time and can be grown on a large scale directly onto an ITO-coated glass that makes it potential in many electrochromic applications. The structure, morphology, and composition of the WO3−x nanowires were characterized using the scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and energy-dispersive spectrometer. The optical and electrochromic performance of the nanowires layer under lithium intercalation was studied in detail by UV–VIS–NIR spectroscope and cyclic voltameter.  相似文献   

12.
We have prepared and tested integrated low-emittance–electrochromic devices using ZnS/Ag/ZnS coatings as transparent electrodes and WO3 films as electrochromic layers. These devices exhibit adequate coloration and can withstand more than 1000 bleaching-coloration cycles, provided that the metal layer is protected from the liquid electrolyte by a combination of thick dielectric films (ZnS/WO3). We have also predicted the optimum configuration of the WO3/ZnS/Ag/ZnS/Glass stack that maximizes transmission in the visible. Integration of low emittance and electrochromic films into one device could improve the performance and reduce the cost of electrochromic windows.  相似文献   

13.
This paper reports enhanced electrochromic properties in the infrared region, so-called IR, and in particular, in the middle wavelength (MW: 3–5 μm) and long wavelength (LW: 8–12 μm), of radio frequency sputtered (RFS) WO3 thin films, thanks to a careful optimization of the deposition conditions, namely the duration of deposition (<240 min), the substrate nature (FTO or Au), and the chamber pressure (15 and 45 mT). Significant modulations in reflectance (as high as 73% in the MW) and in the apparent temperature (up to 35 °C) between the inserted state and the deinserted one, for WO3 thin films cycled in H3PO4 liquid electrolyte, are reported. Such performances correspond to a variation in emissivity of at least 40% as required for military applications. Finally, coupling both modelling and experimental approaches, first trends on the incorporation of the WO3 single layer in full electrochromic devices (ECDs) are discussed considering mainly an all-solid-state device configuration.  相似文献   

14.
Thin films of electrochromic WO3 were prepared via wet chemical deposition. Precursor solutions containing WOCl4 in isopropanol were used and films were deposited by spin coating. Various techniques were used for characterization of the films such as Rutherford backscattering spectroscopy (RBS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-VIS spectroscopy and electrochemical methods. Composition, structural characteristics and electrochromic properties were studied as function of the curing temperature, in the range 80–500°C.  相似文献   

15.
Sol–gel spin coating process is used to produce optical filters from SiO2 and TiO2 multi-layers. By coating the films symmetrically on both sides of the glass substrates, we designed two types of three-layer anti-reflective (AR) filters for the near–infrared region, and a nine-layer reflective filter for the near–UV region. We develop a simple theoretical model for these filters, which incorporates sol–gel film densification during the coating process, and fit it to the experimental data to extract properties of the individual layers in the coatings.  相似文献   

16.
A new nanocomposite WO3 (NWO) film-based electrochromic layer was fabricated by a spray and electroplating technique in sequence. An indium–tin oxide (ITO) nanoparticle layer was employed as a permanent template to generate the particular nanostructure. The structure and morphology of the NWO film were characterized. The optical and electrochromic properties of the NWO films under lithium intercalation are described and compared to the regular WO3 film. The NWO films showed an improved cycling life and an improved contrast with compatible bleach-coloration transition time, owing to the larger reactive surface area. The nanocomposite WO3 film-based electrochromic device (NWO-ECD) was also successfully fabricated. Most importantly, the NWO film can be prepared on a large scale directly onto a transparent conductive substrate, which demonstrates its potential for many electrochromic applications, especially, smart windows, sunroof and displays.  相似文献   

17.
CuxNi1−xO electrochromic thin films were prepared by sol–gel dip coating and characterized by XRD, UV–vis absorption and electrochromic test. XRD results show that the structure of the Cux Ni1−xO thin films is still in cubic NiO structure. UV–vis absorption spectra show that the absorption edges of the CuxNi1−xO films can be tuned from 335 nm (x = 0) to 550 nm (x = 0.3), and the transmittance of the colored films decrease as the content of Cu increases. CuxNi1−xO films show good electrochromic behavior, both the coloring and bleaching time for a Cu0.2Ni0.8O film were less than 1 s, with a variation of transmittance up to 75% at the wavelength of 632.8 nm.  相似文献   

18.
Electrochromic devices have increasing application in large-area display devices, switchable mirrors and smart windows. A variety of vacuum deposition technologies have been used to make electrochromic devices. The sol–gel process offers an alternative approach to the synthesis of low-cost, high-quality electrochromic device layers. This paper discusses the developments in sol–gel-deposited electrochromic films and a prototype all sol–gel device with switching from 80% to 50% (550 nm). The sol–gel process involves the formation of oxide networks upon hydrolysis–condensation of alkoxide precursors. In this study, we cover sol–gel-deposited oxides of WO3, TiO2, Nb2O5, V2O5, Ni(OH)2, Co(OH)2 and CuOx. The coloration reaction voltammetry and spectral optical properties are presented for selected films.  相似文献   

19.
Electrochromic films of NiOx and WOxPy were produced by the spray pyrolysis technique. The nickel-oxide-based coatings were obtained from both an alcoholic solution of nickel nitrate and aqueous solution of the mixture nickel nitrate/cobalt nitrate. Coatings obtained from alcoholic solutions showed a noticeable contrast of optical transmittance from fully bleached to colored state. X-ray diffraction analysis showed a slight crystallization in NiOx after electrochemical treatment: one diffraction peak for as-deposited films turned to three diffraction peaks for electrochemical treated samples. Coatings obtained from aqueous solution of mixture nickel nitrate/cobalt nitrate showed an optimized electrochromic behavior at a Ni:Co proportion of 90:10. At this condition an optical contrast of 50% is found. X-ray diffraction showed that these samples comprised a phase mixture of Co3O4 and NiO.WOxPy samples were obtained from polytungsten gel in which H3PO4 was added. We found that for 8.3 at% of P:W, the electrochromism was optimized. Pyrolytic coatings of WOxPy show superior behavior than those of WOx obtained by spray pyrolysis, both in optical contrast and durability.  相似文献   

20.
Now-a-days a large number of extensive research has been focused on electrochromic oxide thin films, owing to their potential applications in smart windows, low cost materials in filters, low cost electrochemical devices and also in solar cell windows. Among the varieties of electrochromic transition metal oxides, the molybdenum oxide (MoO3) and tungsten oxide (WO3), form a group of predominant ionic solids that exhibit electrochromic effect. The electrochromic response of these materials are aesthetically superior to many other electrochromic materials, because WO3 and MoO3 absorb light more intensely and uniformly. In the present case, we have discussed about the electrochromic behaviour of electron beam evaporated MoO3 films. Moreover, the MoO3 film can also be used as a potential electro-active material for high energy density secondary lithium ion batteries; because it exhibits two-dimensional van der Waals bonded layered structure in orthorhombic phase. The films were prepared by evaporating the palletized MoO3 powder under the vacuum of the order of 1 × 10−5 mbar. The electrochemical behaviour of the films was studied by intercalating/deintercalating the K+ ions from KCl electrolyte solutions using three electrode electrochemical cell by the cyclic-voltammetry technique. The studies were carried out for different scanning rates. The films have changed their colour as dark blue in the colouration process and returns to the original colour while the bleaching process. The diffusion coefficient values (D) of the intercalated/deintercalated films were calculated by Randle's Servcik equation. The optical transparency of the coloured and bleached films was studied by the UV–Vis–NIR spectrophotometer. The change in bonding assignment of the intercalated MoO3 films was studied by FTIR spectroscopic analysis. A feasible study on the effect of substrate temperatures and annealing temperatures on optical density (OD) and colouration efficiency of the films were discussed and explored their performance for the low cost electrochemical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号