首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
设计并搭建了一种碟式聚光光伏发电系统,介绍了系统的结构,阐述了系统工作原理,并对其进行了户外实验研究。根据实验结果,该碟式聚光光伏系统的几何聚光倍数为150倍,其峰值功率为1.5315W/cm2,平均效率为26.58%,电池平均工作温度为46.875℃。太阳直接辐射强度和电池温度是影响三结砷化镓光伏电池性能的主要因素。与现有的单晶硅光伏电池片相比,三结砷化镓聚光光伏电池具有转换效率高、电学性能好等特点,所收集的电池温度、输出功率、效率等数据对碟式聚光光伏系统的进一步研究具有一定参考价值。  相似文献   

2.
单抛物反射面聚光光伏系统的性能研究   总被引:1,自引:0,他引:1  
为了提高常规光伏电池组件利用率,该文采用单抛物反射面建立了聚光光伏系统,并与常规平板系统对比,进行了性能研究.该系统利用控制机构,根据太阳高度角决定单抛物反射面是否立起工作,对太阳辐射低倍率聚光,避免了聚光后辐照度过高,表面温度升高也较小.对比常规平板系统,夏至附近短路电流提高了约12.6%,开路电压提高了约0.5%;冬至附近,短路电流提高了约36.4%,开路电压提高了约1.4%.另一方面,夏至附近不聚光的最高辐照度为842W/m2,冬至附近聚光的最高辐照度为834W/m2,不会损伤光伏电池组件,可采用普通多晶硅光伏电池组件,且不需要冷却系统.研究表明,采用该系统能以较小的成本获得以上受益,发掘了常规光伏电池组件应用潜力,为进一步提高光伏发电系统的性价比提供了方法.  相似文献   

3.
利用砷化镓聚光太阳电池设计制作建筑一体化高倍(500倍)聚光光伏组件,采用TracePro软件对组件光学性能进行了模拟分析,同时对组件光、电特性进行了实验检测。模拟结果表明经一次聚光后光斑尺寸为15 mm×15 mm,二次聚光器的能量损失为4.1%,跟踪误差在±0.5°以内时对组件聚光效率影响较小,组件聚光效率达到78.1%;实测结果表明跟踪误差为±0.5°的情况下,一次聚光后光斑实际尺寸为25 mm×25 mm,导致部分能量未汇聚到二次聚光器上,因此实测聚光效率为69.0%;聚光电池的实测发电效率保持在37.9%,组件的系统运行效率保持在26.1%。  相似文献   

4.
针对聚光型太阳能光伏电池工作中温度升高会导致发电效率降低的问题,在太阳能模组上铺设有机工质循环管路对光伏电池进行冷却,通过冷凝器对管内有机工质吸收的热量进行收集利用,构建聚光型太阳能光伏/光热综合利用系统。建立传热模型,计算不同日照强度下模组的输出效率并与实验数据进行对比。实验结果表明:发电效率随日照强度的增加先增加后减小;对光伏电池进行冷却可提升系统输出效率;太阳能光伏发电及散热量利用效率合计可达60%。  相似文献   

5.
聚光光伏电池的高效、稳定和安全运行依赖于有效冷却技术。常规的聚光光伏电池主动冷却技术需消耗部分光伏电池产生的电能,因而间接降低有效电力输出。据此,文章基于热电模块提出一种聚光光伏电池的自冷却概念设计,并通过热电模块的性能测试实验验证了设计可行性。测试表明,单个56 mm×56 mm热电模块在90℃热源加热条件下的最大开路电压为3.6 V,输出功率为0.97 W。此后,针对10 kW系统进行了参数设计,计算结果表明,整个装置的热电模块总开路电压可达212.6 V,供给冷却模块的输出功率可达706.5 W,满足聚光光伏电池散热的能耗需求。  相似文献   

6.
建立了聚光条件下光伏电池的热平衡方程及电学特性模型,利用模型对电池的输出特性进行了计算,根据计算结果对传热过程中的热阻及电池的串联内阻对电池的温度、光电转换效率及电能输出功率的影响进行了分析。分析结果表明:电池温度随聚光率的增加而升高,电池效率和输出功率随聚光率的增加先增后降,并存在一个最大输出功率;电池冷却过程的热阻越小、工作温度越低,光电转换效率越高、输出功率越大;电池本身串联内阻越大,电池的效率越低、输出功率越小。根据分析结果提出,要使硅电池在聚光条件下长期高效、稳定安全的运行,必须对电池进行适当的冷却,要尽可能减小电池的串联内阻。  相似文献   

7.
低倍聚光光伏系统的实验研究   总被引:1,自引:1,他引:0  
设计并建造了一台低倍聚光光伏发电系统,介绍了系统的结构,阐述了系统工作原理,并对其进行了实验研究,与固定安放的光伏系统进行了对比.根据实验结果,低倍聚光光伏系统在测量时段内的输出功率始终明显大于固定光伏系统,其总发电量是后者的3.18倍,这证明了这种光伏系统的优越性,所收集的电池温度、输出功率等数据对该类型聚光光伏系统的进一步研究有一定的参考价值.  相似文献   

8.
国内首座太阳能聚光光伏示范电站在内蒙古鄂尔多斯市建成.该项目安装了200kW太阳能聚光光伏电池和5kW常规平板太阳能光伏电池。聚光光伏发电系统可提高太阳能电池的发电量  相似文献   

9.
通过聚光等形式提高光能密度,减少光伏材料的使用量,有助于保护环境和节约能源。文章提出一种新型聚光器设计方案,其在分析太阳张角对光路影响基础上,对聚光器模型进行改进,并得到接收器上反射光线分布规律。根据节省材料比和聚光硅电池效率选取聚光器参数,建立聚光器三维模型,在TracePro软件中进行仿真,得到接收器表面的辐照度分布和总光通量,与传统光伏聚光器聚光效果对比,验证聚光器模型的有效性,为聚光光伏发电系统的实物设计奠定了理论基础。  相似文献   

10.
聚光太阳能热电系统的实验研究   总被引:2,自引:0,他引:2  
利用所设计的2m~2槽式聚光热电联供系统,对晶硅阵列和砷化镓电池阵列进行性能测试实验,结果表明:砷化镓电池阵列的聚光特性优于晶硅电池阵列。优选出一定聚光比作用下性能较好的砷化镓电池阵列建立10m~2槽式太阳能聚光热电系统,实验表明:10m~2系统的电池阵列电效率为23.21%,系统光电效率和光热效率分别为9.88%和49.84%,系统(?)效率为13.48%,比基于槽式聚光加热真空管系统(?)效率高158%,比平板光伏发电系统(?)效率高16%。对采用空间太阳电池阵列的10m~2聚光热电系统性能分析表明,槽式聚光热电联供系统发电成本已与平板的持平,且每年还可提供4838.38MJ热量供用户使用。  相似文献   

11.
在太阳能光伏热系统中,光伏电池温度过高会导致太阳能发电效率下降。相变微胶囊悬浮液(MEPCMS)是一种潜热型功能性流体,将其作为冷却介质用于太阳能光伏热系统可以有效降低光伏电池温度,提高系统的能量利用率。针对相变微胶囊易泄露、导热性差等问题提出了改性方法,使其具有光热转换功能并提升了综合性能。基于性能评价指标分析了太阳能光伏热系统性能的影响因素。结果发现,流速、浓度和太阳辐照量是影响MEPCMS在太阳能光伏热系统中换热性能的关键因素。适当增加MEPCMS浓度和流速能提高工质的换热性能,在降低光伏板温度的同时增加太阳辐照量和系统热电产量,但需结合太阳辐照量大小合理匹配工质的浓度和流速。未来研究方向可集中在提升MEPCMS在太阳能光伏热系统中的换热性能、探究运行参数和太阳辐照量之间的匹配关系、优化集热器结构、利用其蓄热性解决太阳能间歇性等方面。  相似文献   

12.
设计并搭建了CPC低倍聚光太阳能PV/T单通道空气系统实验台,对不同工作环境下聚光PV/T系统的热电性能进行了实验研究。实验研究结果显示:在聚光条件下,系统的各表面温度随光照强度的增加而升高,随下部通道入口空气流速的增加而降低。聚光PV/T系统的最大输出功率可达到60W,比对应相同电池面积平板系统最大输出功率高20W。聚光PV/T系统的各效率随光照强度增加而增大,系统的最大电效率为11%,最大热效率为70%,最大火用效率为16%,比单纯发电时最大火用效率提高约5%。实验获得了一批新的有价值的实验数据,为聚光太阳能光伏光热系统的进一步研究提供了依据。  相似文献   

13.
聚光型太阳能光伏光热系统(CPV/T)在传统光伏发电系统的基础上增加了聚光系统和光热系统,在通过聚光系统提高光伏效率的同时将系统中多余的热量加以利用,以达到太阳能最大化利用的目的。本文介绍了CPV/T系统的工作原理及其能效影响因素,以直接影响系统太阳能综合利用效率的聚光器技术、光伏电池技术和光伏冷却技术作为分析对象,结合近几年国内外最新研究成果比较了不同类型聚光器、光伏电池以及冷却方式的优劣,列举了常见的光伏余热利用方式。分析认为:CPV/T系统虽然具有更高的太阳能利用率,但应加大对系统尤其是聚光器经济性的分析;考虑在系统中应用叠层光伏电池缓解聚光器带来的系统体积过大问题;新电池开发过程中应更注意光伏电池的温度系数以减少冷却系统的压力,冷却技术在强化散热的同时也应注意热量的收集方法及其与利用途径的有效结合。  相似文献   

14.
建立了带有散热翅片的聚光太阳能PV/T热电联产系统内部传热过程的一维稳态数学模型,对传热过程进行了数值模拟,分析了空气质量流速、入射光强度、聚光比、环境温度、上部通道高度及翅片参数对系统的空气温度、电池板温度及系统热、电效率的影响.结果表明:随着入射光强、聚光比的增加,空气出口温度和电池板温度都会增加,系统热电总效率增加;通过增空气流量可以有效降低电池温度,提高电池的光电转换效率和系统的总能量利用效率;吸热板背面的翅片可以强化通道内空气的传热过程,降低电池板的温度,系统效率可增加约2%;在相同的光照条件下,人口空气温度越低,上部通道越窄,系统热效率越高.研究结果为聚光太阳能PV/T热电联产系统的设计和运行提供了理论依据.  相似文献   

15.
太阳能光电/光热一体化系统主要由光伏电池组件和太阳能集热器组成,可同时实现光伏发电和光热利用,从而有效地提高了太阳能的综合利用效率。文章首先从光伏组件和光热部件着手,分析了PV/T系统的结构和各项性能;然后,概述了目前常用的PV/T热水系统性能评估方法;最后,提出了在推广PV/T系统时还须解决的问题。  相似文献   

16.
利用PV/T太阳能光伏光热系统实验平台针对空气质量流量、太阳辐照强度、环境温度和大气降尘 4种影响系统性能的关键工况参数进行了实验研究。结果表明:在实验设定的流量范围内,PV/T系统的光热和光电效率都随着空气质量流量增大而稳步上升;太阳辐照强度增大时,系统输出电功率随之增大,光热效率变化较小,光电效率有一定程度的降低;环境温度在一定范围内时,系统的输出电功率和集热效率都随着环境温度的增大而增大,而当环境温度超过一定值后,系统的光伏模块受面板温度升高的影响光电转换效率呈下降趋势;随着积尘密度的增大,玻璃盖板的透射率减小,一个月的积尘量会导致系统光电效率和输出电功率分别下降17.84%和18.25%,若以光电效率衰减20%为界限,清洁周期为5周左右。  相似文献   

17.
This paper proposes maximum photovoltaic power tracking (MPPT) for the photovoltaic (PV) array using the fractional-order incremental conductance method (FOICM). Since the PV array has low conversion efficiency, and the output power of PV array depends on the operation environments, such as various solar radiation, environment temperature, and weather conditions. Maximum charging power can be increased to a battery using a MPPT algorithm. The energy conversion of the absorbed solar light and cell temperature is directly transferred to the semiconductor, but electricity conduction has anomalous diffusion phenomena in inhomogeneous material. FOICM can provide a dynamic mathematical model to describe non-linear characteristics. The fractional-order incremental change as dynamic variable is used to adjust the PV array voltage toward the maximum power point. For a small-scale PV conversion system, the proposed method is validated by simulation with different operation environments. Compared with traditional methods, experimental results demonstrate the short tracking time and the practicality in MPPT of PV array.  相似文献   

18.
太阳能光伏光热建筑一体化系统的研究   总被引:1,自引:0,他引:1  
太阳能光伏光热一体化不仅能够有效降低光伏组件的温度,提高光伏发电效率,而且能够产生热能,从而大大提高了太阳能的转换效率。对光伏光热建筑一体化(BIPV/T)系统的两种主要模式:水冷却型和空气冷却型系统的工作原理和系统模型进行了理论介绍,详细说明了两种系统中热产品在家庭中的应用。并对目前研究情况下两个系统中存在的问题提出了改进方案。与常规建筑相比,光伏光热建筑减少了墙体得热,改善了室内空调负荷状况,提高了建筑节能效果。  相似文献   

19.
Compared with traditional photovoltaic‐thermal system, low concentration photovoltaic‐thermal systems install the low‐power concentrator (compound parabolic concentrator, Fresnel concentrator, miniature trough concentrator, etc) to improve system performance. In this paper, a baffle heat exchange channel was designed, which can decrease the temperature gradient of low concentration photovoltaic‐thermal module in the flow direction, based on the traditional flat‐box photovoltaic‐thermal collector. The system performance was monitored with different baffle spacing, flow rate, inlet temperature, ambient temperature, and radiation intensity by adopting simulation methodology. Furthermore, an experiment was performed to validate and evaluate the simulation results. The results indicated that, on a typical day, the maximum of thermal efficiency and electrical efficiency of the module were 55.11% and 12.50%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号