共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new ICRF antennas operating in the ion cyclotron radio frequency (ICRF) range have been developed for EAST to overcome the low coupling problem of the original antennas. The original ICRF antennas were limited in their power capacity due to insufficient coupling. The new antenna design takes into account both wave coupling and absorption processes through comprehensive wave coupling and absorption codes, with the dominant parallel wave number $ {k}_{//} $ of 7.5 m−1 at dipole phasing. Through the use of these new ICRF antennas, we are able to achieve 3.8 MW output power and 360 s operation, respectively. The initial experimental results demonstrate the reliability of the antenna design method. 相似文献
2.
3.
The experimental advanced superconducting Tokamak has two suits of ion cyclotron radio frequency heating systems, in which the two antennas are of different structures. Their performance is assessed and compared by CST microwave studio. The radiating capacity of antennas and the arcing around them are estimated. The impurity release is analyzed by the radio frequency(RF) potential in the plasma sheath. The simulation results show that the radiating capacity for the folded antenna(I-port) is better than those for the double loops antenna(B-port). However,the folded antenna is worse than the double loops antenna in terms of breakdown. Moreover, the impurity production is relevant to spectrum shaping. The RF potential at(0, π,π, 0) phasing with the peak of spectrum k//= 8.5 m~(-1)is lower than the one with other phases. The impurity is reduced obviously when the folded antenna is powered with(0, π, π, 0) phasing. 相似文献
4.
5.
6.
Reference Design of ICRF Antenna for EAST 总被引:1,自引:0,他引:1
An antenna array suitable for plasma heating and current drive has been designed for the ion cyclotron resonance frequency range (ICRF) heating on the EAST superconducting tokamak. The ICRF heating is planned to operate in a frequency range of 30 MHz to 80 MHz and hence the antenna geometry is optimized for 55 MHz. The design is based on the conventional strap antenna element. The coupling properties of the antenna are calculated with a slab model of the plasma for the antenna simulation. The coupling code is extended for the analysis of the toroidal antenna array separated by septa. 相似文献
7.
杨宇晴 张新军 赵燕平 秦成明 程艳 毛玉周 杨桦 王健华 袁帅 王磊 琚松青 陈根 邓旭 张开 万宝年 李建刚 宋云涛 龚先祖 钱金平 张涛 《等离子体科学和技术》2018,20(4):45102-111
Recent ion cyclotron resonance frequency(ICRF) coupling experiments for optimizing ICRF heating in high power discharge were performed on EAST. The coupling experiments were focus on antenna phasing and gas puffing, which were performed separately on two ports of the ion cyclotron resonance heating(ICRH) system of EAST. The antenna phasing was performed on the I-port antenna, which consists of four toroidally spaced radiating straps operating in multiple phasing cases; the coupling performance was better under low wave number ∣k_‖∣(ranging from 4.5 to 6.5). By fuelling the plasma from gas injectors, placed as uniformly spaced array from top to bottom at each side limiter of the B-port antenna, which works in dipole phasing, the coupling resistance of the B-port antenna increased obviously.Furthermore, the coupling resistance of the I-port antenna was insensitive to a smaller rate of gas puffing but when the gas injection rate was more than a certain value(1021 s~(-1)), a sharp increase in the coupling resistance of the I-port antenna occurred, which was mainly caused by the toroidal asymmetric boundary density arising from gas puffing. A more specific analysis is given in the paper. 相似文献
8.
CHEN Gen QIN Chengming MAO Yuzhou ZHAO Yanping YUAN Shuai ZHANG Xinjun 《等离子体科学和技术》2016,18(8):870-874
The source system covering a working frequency range of 24 MHz to 70 MHz with a total maximum output power of 12 MW has already been fabricated for Ion Cyclotron Range of Frequency(ICRF) heating in EAST from 2012. There are two continuous wave(CW) antennas consisting of four launching elements each fed by a separate 1.5 MW transmitter. Due to the strong mutual coupling among the launching elements, the injection power for launching elements should be imbalance to keep the k||(parallel wave number) spectrum of the launcher symmetric for ICRF heating. Cross power induced by the mutual coupling will also induce many significant issues,such as an uncontrollable phase of currents in launching elements, high voltage standing wave ratio(VSWR), and impedance mismatching. It is necessary to develop a power compensation system for antennas to keep the power balance between the feed points. The power balance system consists of two significant parts: a decoupler and phase control. The decoupler helps to achieve ports isolation to make the differential phase controllable and compensate partly cross power. After that, the differential phase of 0 or π will keep the power balance of two feed points completely. The first power compensation system consisting of four decouplers was assembled and tested for the port B antenna at the working frequency of 35 MHz. With the application of the power compensation system, the power balance, phase feedback control, and voltage standing wave ratio(VSWR) had obviously been improved in the 2015 EAST campaign. 相似文献
9.
Radio frequency (RF) heating in the ion cyclotron range of frequencies (ICRF) is one of the primary auxiliary heating methods for EAST. The ICRF system provides 6 MW power in primary phase and will be capable of 10 MW later. Three 1.5 MW ICRF systems in a frequency range of 25 to 70 MHz have already been in operation. The ICRF heating launchers are designed to have two current straps with each driven by a RF power source of 1.5 MW. In this paper a brief introduction of the ICRF heating system capability in EAST and the preliminary results in EAST are presented. 相似文献
10.
In numerical simulations of the ion cyclotron range of frequencies (ICRF) wave heating scheme, core solvers usually focus on wave propagation and absorption mechanisms within the core plasma region. However, the realistic scrape-off layer (SOL) plasma is usually simplified, making it difficult to have deeper understanding of wave propagation and absorption within the SOL. In this work, we employ a cold plasma assumption and an artificial absorption mechanism based on the approach of reference (Zhang et al 2022 Nucl. Fusion 62 076032), to study wave propagation and absorption in the realistic SOL plasma of the EAST. During the exponential decay of the total coupled power with respect to the toroidal mode numbers, several fluctuations are observed in the case of low collisional frequencies. The fluctuations may be caused by the cavity modes associated with specific toroidal mode numbers. Due to the presence of cut-off densities, the edge power losses and the total coupled power exhibit different behaviors before and after the cut-off layer is “open”. Furthermore, the simulation results obtained from the kinetic model in reference (Zhang et al 2022 Nucl. Fusion 62 076032) is discussed. This suggests that both the core-edge combined model and the artificial mechanism are capable of simulating wave propagation and absorption. 相似文献
11.
Manman XU Yuntao SONG Gen CHEN Yanping ZHAO Yuzhou MAO Guang LIU Zhen PENG 《等离子体科学和技术》2017,19(11):115601-115601
Ion cyclotron range of frequency(ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in the EAST. However, the antenna load will fluctuate with the change of plasma parameters in the ICRF heating process. To ensure the steady operation of the ICRF heating system in the EAST, fast ferrite tuner(FFT) has been carried out to achieve real-time impedance matching. For the requirements of the FFT impedance matching system, the magnet system of the ferrite tuner(FT) was designed by numerical simulations and experimental analysis, where the biasing magnetic circuit and alternating magnetic circuit were the key researched parts of the ferrite magnet. The integral design goal of the FT magnetic circuit is that DC bias magnetic field is 2000 Gs and alternating magnetic field is±400 Gs. In the FTT, E-type magnetic circuit was adopted. Ferrite material is Nd Fe B with a thickness of 30 mm by setting the working point of Nd Fe B, and the ampere turn of excitation coil is 25 through the theoretical calculation and simulation analysis. The coil inductance to generate alternating magnetic field is about 7 m H. Eddy-current effect has been analyzed, while the magnetic field distribution has been measured by a Hall probe in the medium plane of the biasing magnet. Finally, the test results show the good performance of the biasing magnet satisfying the design and operating requirements of the FFT. 相似文献
12.
Gen CHEN 《等离子体科学和技术》2022,24(1):15602
The Ion Cyclotron Radio Frequency (ICRF) heating antenna on EAST adopts a decoupling device to constrain power coupling among the radiation straps, which was discovered shortcomings such as long size, poor contact, and etc. In order to improve these weak points, a new type decoupler with terminal-loaded tunable capacitor is designed to replace the previous design. Besides the capability of the tunable admittance parameters of decoupler, the withstand voltage of the capacitor is the most significant consideration for working under high power. Therefore, the theoretical analysis carefully elaborates the capacitor withstand voltage, and the detailed analytical equations and criteria for design are given. After the comparative analysis of theoretical calculation and 3D simulation results, the decoupler design scheme is finalized. The capacitor-loaded decoupler has been successfully adopted for ICRF antenna at port N on EAST, and achieved the optimization of adjacent port isolation from −22 to −58 dB at 37 MHz without plasma to restrict mutual coupling. The new design of the decoupler has greatly improved its compactness and automatic adjustment performance, and could be good solution for the decoupling network of ICRF antennas. 相似文献
13.
Design of a New Type of Stub Tuner in ICRF Experiment 总被引:2,自引:0,他引:2
In the Ion Cyclotron Range of Frequency(ICRF) heating experiment,impedance matching is of great practical significance,because wide variations in antenna loading are observed within the discharge,in tokamaks operating in H-mode.A sudden decrease in antenna loading accompanying the L-mode to H-mode transition typically occurs on a timescale of a few millisec onds,as does the increase in loading at the H- to L-mode transition.Therefore,it is necessary to match dynamically in the transmission line between the generator output and the antenna input connections[1].A new type of stub tuner being developed utilizes the difference in radio-frequency wavelengths between gas and liquid due to different relative dielectric constants.The impedance matching can be adjusted in realtime in an attempt to track the variations in the antenna loading.Since there are no mechanically moving parts in the short ends of stub,the change can be more convenient and safe,moreover,it can withstand higher voltage without breakdown.this system device will be applied in the HT-7 superconductor Tokamak ICRF experiment. 相似文献
14.
周华;杜丹;杨钟时;杨庆喜;张伟;牛国鉴 《等离子体科学和技术》2024,26(11):114003-1-114003-13
A program developed with COMSOL software integrates EAST four-strap antenna coupling with the double-stub Ferrite tuners(FT)impedance matching,obtaining physical quantities crucial for predicting the overall performance of the ion cyclotron resonance heating(ICRH)antenna and matching system.These quantities encompass S-matrix,port complex impedance,reflection coefficients,electric field and voltage distribution,and optimal matching settings.In this study,we explore the relationship between S-matrix,reflection coefficients,port complex impedance,and frequency.Then,we analyze the impact of Faraday screens placement position and transparency,the distance from the Faraday screen(FS)to the current straps(CS),the relative distance between ports,and the characteristic impedance of the transmission line on the coupling characteristic impedance of the EAST ICRH system.Finally,we simulate the electric field distribution and voltage distribution of the EAST ICRH system for plasma heating with double-stub FT impedance matching.Using optimized parameters,the coupling power of the ICRH system can be approximately doubled.The results present herein may offer guidance for the design of high-power,long-pulse operation ICRH antenna systems. 相似文献
15.
A program developed with COMSOL software integrates EAST four-strap antenna coupling with the double-stub Ferrite tuners (FT) impedance matching, obtaining physical quantities crucial for predicting the overall performance of the ion cyclotron resonance heating (ICRH) antenna and matching system. These quantities encompass S -matrix, port complex impedance, reflection coefficients, electric field and voltage distribution, and optimal matching settings. In this study, we explore the relationship between S -matrix, reflection coefficients, port complex impedance, and frequency. Then, we analyze the impact of Faraday screens placement position and transparency, the distance from the Faraday screen (FS) to the current straps (CS), the relative distance between ports, and the characteristic impedance of the transmission line on the coupling characteristic impedance of the EAST ICRH system. Finally, we simulate the electric field distribution and voltage distribution of the EAST ICRH system for plasma heating with double-stub FT impedance matching. Using optimized parameters, the coupling power of the ICRH system can be approximately doubled. The results present herein may offer guidance for the design of high-power, long-pulse operation ICRH antenna systems. 相似文献
16.
Y.D. Bae J.G. Kwak S.J. Wang J.S. Yoon S.K. Kim C.K. Hwang B.G. Hong 《Fusion Engineering and Design》2007,82(3):307-316
A new ICRF antenna originating from the prototype antenna was constructed for the KSTAR tokamak in 2002. The performance of the antenna was experimentally estimated at the RF test stand without a plasma. Recently three series of RF tests were performed at a frequency of 30 MHz; without any cooling, with a water-cooling for only the antenna, and with a water-cooling of the antenna and the transmission line connected to the antenna. In the tests, a half of the current strap was connected to a RF source via a matching circuit with the other half one connected to an open terminated coaxial line, and the other three straps were shorted at the input ports. During the RF pulse, the temperatures at several positions of the antenna cavity wall were measured by embedded thermocouples and the temperature profile of the front face of the antenna was measured by an IR camera. The line voltage, forward and reflected powers, and the RFTC pressure were also measured. The water-cooled antenna showed several enhanced performances in a comparison with the non-cooled case, and the standoff voltage was significantly increased. By utilizing a water-cooling of the antenna and the transmission line, we achieved a standoff voltage of 41.3 kVp for a pulse length of 300 s, and we could extend the pulse length up to 600 s at a maximum voltage of 35.0 kVp without encountering any problems, which considerably exceeds the design requirements. 相似文献
17.
Zhen PENG 《等离子体科学和技术》2020,22(10):105601-105601
A multi-voltage probe array system is designed to measure the coupling resistance of an ioncyclotron resonance frequency antenna. In the process of the antenna coupling resistance dataextraction, the minimization algorithm, the original Levenberg–Marquardt algorithm, is replacedby the Broyden–Fletcher–Goldfarb–Shanno algorithm to achieve more stable and accurateresults. Moreover, a simple model of the multi-voltage probe array was applied to simulate theperformance of the Kalman filter, and to optimize the distance and position of the probes andprobe number to mitigate the influence of the system noise on the rebuilt results. During theEAST experiment in 2019, a four-voltage probe array was applied to measure the couplingresistance of line 6 during high confined mode discharge. The measurement results by the multi-voltage probe array system and the voltage/current probe pair show a good agreement. 相似文献
18.
19.
The ion cyclotron resonance of frequency heating(ICRH) plays an important role in plasma heating.Two ICRH antennas were designed and applied on the EAST tokamak.In order to meet the requirement imposed by high-power and long-pulse operation of EAST in the future,an active cooling system is mandatory to be designed to remove the heat load deposited on the components.Thermal analyses for high heat-load components have been carried out,which presented clear temperature distribution on each component and provided the reference data to do the optimization.Meanwhile,heat pipes were designed to satisfy the high requirement imposed by a Faraday shield and lateral limiter. 相似文献
20.
为了实现EAST托卡马克1000s以上的稳态先进模式运行的最终物理目标,两电流带双环共振(RDL)离子回旋共振(ICRF)天线被选择用来加热,电流带是ICRF天线关键部件,它通过近场区的耦合把能量传输到等离子体中。本文通过有限元方法对电流带在等离子体破裂和等离子体垂直位移事件两种工况下进行了电磁计算,给出了电流带感应电流密度大小分布情况、磁感应强度大小分布情况以及电流带所受的电磁力。利用电流带所受的电磁力作为载荷对电流带进行了结构分析,分析结果为验证电流带结构的可行性提供理论依据,分析方法对未来更高功率的ICRF天线电流带进行电磁分析具有一定的借鉴价值。 相似文献