首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The distribution of gamma-tubulin as a marker of microtubule organizing centres (MTOC) was studied during spermiogenesis in rodents and in rabbit, monkey and man. A polyclonal antibody directed against human gamma-tubulin was used both for indirect immunofluorescence (IIF) and post-embedding immunogold procedures. In all species, gamma-tubulin was detected in the proximal and distal centrioles of round spermatids. In elongating spermatids, gamma-tubulin was predominantly found in the pericentriolar material (PCM) of both centrioles and particularly around the adjunct of the proximal centriole. At this level, some labelling was also associated with manchette microtubules, but other parts of the manchette and the nuclear ring were never labelled. We propose a role for distal centriole gamma-tubulin in axoneme nucleation and centriolar adjunct gamma-tubulin in manchette nucleation. The disappearance of gamma-tubulin in mature spermatozoa indicates that sperm aster nucleation should be dependent on oocyte gamma-tubulin. Remnants of gamma-tubulin in some human spermatozoa suggest that paternal gamma-tubulin also could contribute to sperm aster formation.  相似文献   

2.
Animal cells contain a single centrosome that nucleates and organizes a polarized array of microtubules which functions in many cellular processes. In most cells the centrosome is composed of two centrioles surrounded by an ill-defined "cloud" of pericentriolar material. Recently, gamma-tubulin-containing 25-nm diameter ring structures have been identified as likely microtubule nucleation sites within the pericentriolar material of isolated centrosomes. Here we demonstrate that when Spisula centrosomes are extracted with 1.0 M KI they lose their microtubule nucleation potential and appear by three-dimensional electron microscopy as a complex lattice, built from 12- to 15-nm thick elementary fiber(s), that lack centrioles and 25-nm rings. Importantly, when these remnants are incubated in extracts prepared from Spisula oocytes they recover their 25-nm rings, gamma-tubulin, and microtubule nucleation potential. This recovery process occurs in the absence of microtubules, divalent cations, and nucleotides. Thus, in animals the centrosome is structurally organized around a KI-insoluble filament-based "centromatrix" that serves as a scaffold to which those proteins required for microtubule nucleation bind, either directly or indirectly, in a divalent cation and nucleotide independent manner.  相似文献   

3.
Antisera from scleroderma patients that react widely with centrosomes in plants and animals were used to isolate cDNAs encoding a novel centrosomal protein. The nucleotide sequence is consistent with a 7 kb mRNA and contains an open reading frame encoding a protein with a putative large coiled-coil domain flanked by noncoiled ends. Antisera recognize a 220 kd protein and stain centrosomes and acentriolar microtubule-organizing centers, where the protein is localized to the pericentriolar material (hence, the name pericentrin). Anti-pericentrin antibodies disrupt mitotic and meiotic divisions in vivo and block microtubule aster formation in Xenopus extracts, but do not block gamma-tubulin assembly or microtubule nucleation from mature centrosomes. These results suggest that pericentrin is a conserved integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays.  相似文献   

4.
Microtubule nucleation by gamma-tubulin-containing rings in the centrosome   总被引:2,自引:0,他引:2  
The microtubule cytoskeleton of animal cells does not assemble spontaneously, but instead requires the centrosome. This organelle consists of a pair of centrioles surrounded by a complex collection of proteins known as the pericentriolar material (PCM). The PCM is required for microtubule nucleation. The minus, or slow-growing, ends of microtubules are embedded in the PCM and the plus, or fast-growing, ends project outwards into the cytoplasm during interphase, or into the spindle apparatus during mitosis. gamma-Tubulin is the only component of the PCM that is so far implicated in microtubule nucleation. Here we use immuno-electron microscopic tomography to show that gamma-tubulin is localized in ring structures in the PCM of purified centrosomes without microtubules. When these centrosomes are used to nucleate microtubule growth, gamma-tubulin is localized at the minus ends of the microtubules. We conclude that microtubule-nucleating sites within the PCM are ring-shaped templates that contain multiple copies of gamma-tubulin.  相似文献   

5.
Pericentrin and gamma-tubulin are integral centrosome proteins that play a role in microtubule nucleation and organization. In this study, we examined the relationship between these proteins in the cytoplasm and at the centrosome. In extracts prepared from Xenopus eggs, the proteins were part of a large complex as demonstrated by sucrose gradient sedimentation, gel filtration and coimmunoprecipitation analysis. The pericentrin-gamma-tubulin complex was distinct from the previously described gamma-tubulin ring complex (gamma-TuRC) as purified gamma-TuRC fractions did not contain detectable pericentrin. When assembled at the centrosome, the two proteins remained in close proximity as shown by fluorescence resonance energy transfer. The three- dimensional organization of the centrosome-associated fraction of these proteins was determined using an improved immunofluorescence method. This analysis revealed a novel reticular lattice that was conserved from mammals to amphibians, and was organized independent of centrioles. The lattice changed dramatically during the cell cycle, enlarging from G1 until mitosis, then rapidly disassembling as cells exited mitosis. In cells colabeled to detect centrosomes and nucleated microtubules, lattice elements appeared to contact the minus ends of nucleated microtubules. Our results indicate that pericentrin and gamma-tubulin assemble into a unique centrosome lattice that represents the higher-order organization of microtubule nucleating sites at the centrosome.  相似文献   

6.
A trimeric complex formed by Tub4p, the budding yeast gamma-tubulin, and the two spindle pole body components, Spc98p and Spc97p, has recently been characterized in Saccharomyces cerevisiae. We reasoned that crucial functions, such as the control of microtubule nucleation, could be maintained among divergent species. SPC98-related sequences were searched in dbEST using the BLASTN program. Primers derived from the human expressed sequence tag matching SPC98 were used to clone the 5' and 3' cDNA ends by rapid amplification of cDNA ends (RACE)-PCR. The human Spc98 cDNA presents an alternative splicing at the 3' end. The deduced protein possesses 22% identity and 45% similarity with the yeast homologue. We further report that the human Spc98p, like gamma-tubulin, is concentrated at the centrosome, although a large fraction is found in cytosolic complexes. Sucrose gradient sedimentation of the cytosolic fraction and immunoprecipitation experiments demonstrate that both gamma-tubulin and HsSpc98p are in the same complex. Interestingly, Xenopus sperm centrosomes, which are incompetent for microtubule nucleation before their activation in the egg cytoplasm, were found to contain similar amounts of both Spc98p and gamma-tubulin to human somatic centrosomes, which are competent for microtubule nucleation. Finally, affinity-purified antibodies against Spc98p inhibit microtubule nucleation on isolated centrosomes, as well as in microinjected cells, suggesting that this novel protein is indeed required for the nucleation reaction.  相似文献   

7.
Xklp2 is a plus end-directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49-59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein-dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends.  相似文献   

8.
Microtubules and microfilaments are major cytoskeletal elements in mammalian ova and are important modulators of many fertilization and post-fertilization events. In this study, the integrated distribution of microtubules and microfilaments in pig oocytes were examined under a laser scanning confocal microscope, and the requirements of their assembly during in vitro fertilization and parthenogenesis in in vitro matured pig oocytes were determined. After sperm penetration, an aster of microtubules was produced in the spermatozoon, and this microtubule aster filled the whole cytoplasm during pronuclear movement. During pronuclear formation after activation by insemination, microfilaments became concentrated at the male and female pronuclei and, after electrical stimulation, at the female pronucleus. At metaphase of cleavage, microtubules were detected in the spindle and microfilaments were found mainly in the cortex. At anaphase, microtubule asters assembled at each spindle pole. During cleavage, large asters filled each daughter blastomere and a microfilament-rich cleavage furrow was observed. Cytochalasin B, a microfilament inhibitor, inhibited microfilament polymerization but affected neither pronuclear formation nor movement. However, syngamy and cell division were inhibited in eggs treated with cytochalasin B. Treatment with nocodazole after sperm penetration inhibited microtubule assembly and prevented migration leading to pronuclear union and cell division. These results indicate that microtubule and microfilament assembly in pig oocytes are integrated during fertilization and are required for the union of sperm and egg nuclei and for subsequent cell division.  相似文献   

9.
The pattern of sperm centrosomal (centriolar) inheritance, centrosomal replication and perpetuation during mitosis of the human embryo is reviewed with a series of electron micrographs. Embryonic cleavage involves repeated mitoses, a convenient sequence to study centriolar behaviour during cell division. After the paternal inheritance of centrioles in the human was reported (Sathananthan et al., 1991a), there has been an upsurge of centrosomal research in mammals, which largely follow the human pattern. The human egg has an inactive non-functional centrosome. The paternal centrosome contains a prominent centriole (proximal) associated with pericentriolar material which is transmitted to the embryo at fertilization and persists during sperm incorporation. Centriolar duplication occurs at the pronuclear stage (interphase) and the centrosome initially organizes a sperm aster when male and female pronuclei breakdown (prometaphase). The astral centrosome containing diplosomes (two typical centrioles) splits and relocates at opposite poles of a bipolar spindle to establish bipolarization, a prerequisite to normal cell division. Single or double centrioles occupy pivotal positions on spindle poles and paternal and maternal chromosomes organize on the equator of a metaphase spindle, at syngamy. Bipolarization occurs in all monospermic and in most dispermic ova. Dispermic embryos occasionally form two sperm asters initially and produce tripolar spindles (tripolarization). Anaphase and telophase follows producing two or three cells respectively, completing the first cell cycle. Descendants of the sperm centriole were found at every stage of perimplantation embryo development and were traced from fertilization through cleavage (first four cell cycles) to the morula and hatching blastocyst stage. Centrioles were associated with nuclei at interphase, when they were often replicating and occupied pivotal positions on spindle poles during mitosis. Sperm remnants were associated with centrioles and were found at most stages of cleavage. Centrioles were found in trophoblast, embryoblast and endoderm cells in hatching blastocysts. Pericentriolar, centrosomal material nucleated astral and spindle microtubules. Abnormal nuclear configurations observed in embryos reflect mitotic aberrations. The bovine embryo closely resembles the human embryo in centriolar behaviour during mitosis. It is concluded that the sperm centrosome is the functional active centrosome in humans and is likely the ancestor of centrioles within centrosomes in foetal and adult somatic cells. The role of the sperm centrosome in embryogenesis and male infertility is discussed, since it is of clinical importance in assisted reproduction.  相似文献   

10.
Centrosomes and their associated microtubules direct events during mitosis and control the organization of animal cell structures and movement during interphase. The centrosome replicates during the cell cycle, directs the assembly of bipolar mitotic spindles, and plays an important role in maintaining the fidelity of cell division. Recently, tumor suppressors such as p53 and retinoblastoma protein pRB have been localized to the centrosome in a cell cycle-dependent manner. Immunofluorescence microscopy and analysis of isolated centrosomes now provide evidence that BRCA1 protein, a suppressor of tumorigenesis in breast and ovary, also is associated with centrosomes during mitosis. Our results indicate that BRCA1 localizes with the centrosome during mitosis and coimmunoprecipitates with gamma-tubulin, a centrosomal component essential for nucleation of microtubules. Furthermore, gamma-tubulin associates preferentially with a hypophosphorylated form of BRCA1.  相似文献   

11.
In many eukaryotic cells going through M-phase, a bipolar spindle is formed by microtubules nucleated from centrosomes. These microtubules, in addition to being "captured" by kinetochores, may be stabilized by chromatin in two different ways: short-range stabilization effects may affect microtubules in close contact with the chromatin, while long-range stabilization effects may "guide" microtubule growth towards the chromatin (e.g., by introducing a diffusive gradient of an enzymatic activity that affects microtubule assembly). Here, we use both meiotic and mitotic extracts from Xenopus laevis eggs to study microtubule aster formation and microtubule dynamics in the presence of chromatin. In "low-speed" meiotic extracts, in the presence of salmon sperm chromatin, we find that short-range stabilization effects lead to a strong anisotropy of the microtubule asters. Analysis of the dynamic parameters of microtubule growth show that this anisotropy arises from a decrease in the catastrophe frequency, an increase in the rescue frequency and a decrease in the growth velocity. In this system we also find evidence for long-range "guidance" effects, which lead to a weak anisotropy of the asters. Statistically relevant results on these long-range effects are obtained in "high-speed" mitotic extracts in the presence of artificially constructed chromatin stripes. We find that aster anisotropy is biased in the direction of the chromatin and that the catastrophe frequency is reduced in its vicinity. In this system we also find a surprising dependence of the catastrophe and the rescue frequencies on the length of microtubules nucleated from centrosomes: the catastrophe frequency increase and the rescue frequency decreases with microtubule length.  相似文献   

12.
gamma-Tubulin is a universal component of microtubule organizing centers where it is believed to play an important role in the nucleation of microtubule polymerization. gamma-Tubulin also exists as part of a cytoplasmic complex whose size and complexity varies in different organisms. To investigate the composition of the cytoplasmic gamma-tubulin complex in mammalian cells, cell lines stably expressing epitope-tagged versions of human gamma-tubulin were made. The epitope-tagged gamma-tubulins expressed in these cells localize to the centrosome and are incorporated into the cytoplasmic gamma-tubulin complex. Immunoprecipitation of this complex identifies at least seven proteins, with calculated molecular weights of 48, 71, 76, 100, 101, 128, and 211 kD. We have identified the 100- and 101-kD components of the gamma-tubulin complex as homologues of the yeast spindle pole body proteins Spc97p and Spc98p, and named the corresponding human proteins hGCP2 and hGCP3. Sequence analysis revealed that these proteins are not only related to their respective homologues, but are also related to each other. GCP2 and GCP3 colocalize with gamma-tubulin at the centrosome, cosediment with gamma-tubulin in sucrose gradients, and coimmunoprecipitate with gamma-tubulin, indicating that they are part of the gamma-tubulin complex. The conservation of a complex involving gamma-tubulin, GCP2, and GCP3 from yeast to mammals suggests that structurally diverse microtubule organizing centers such as the yeast spindle pole body and the animal centrosome share a common molecular mechanism for microtubule nucleation.  相似文献   

13.
Mitotic chromatin regulates phosphorylation of Stathmin/Op18   总被引:1,自引:0,他引:1  
Meiotic and mitotic spindles are required for the even segregation of duplicated chromosomes to the two daughter cells. The mechanism of spindle assembly is not fully understood, but two have been proposed that are not mutually exclusive. The 'search and capture' model suggests that dynamic microtubules become progressively captured and stabilized by the kinetochores on chromosomes, leading to spindle assembly. The 'local stabilization' model proposes that chromosomes change the state of the cytoplasm around them, making it more favourable to microtubule polymerization. It has been shown that Stathmin/Op18 inhibits microtubule polymerization in vitro by interaction with tubulin, and that overexpression in tissue culture cells of non-phosphorylatable mutants of Stathmin/Op18 prevents the assembly of mitotic spindles. We have used Xenopus egg extracts and magnetic chromatin beads to show that mitotic chromatin induces phosphorylation of Stathmin/Op18. We have also shown that Stathmin/Op18 is one of the factors regulated by mitotic chromatin that governs preferential microtubule growth around chromosomes during spindle assembly.  相似文献   

14.
The focusing of microtubules into mitotic spindle poles in vertebrate somatic cells has been assumed to be the consequence of their nucleation from centrosomes. Contrary to this simple view, in this article we show that an antibody recognizing the light intermediate chain of cytoplasmic dynein (70.1) disrupts both the focused organization of microtubule minus ends and the localization of the nuclear mitotic apparatus protein at spindle poles when injected into cultured cells during metaphase, despite the presence of centrosomes. Examination of the effects of this dynein-specific antibody both in vitro using a cell-free system for mitotic aster assembly and in vivo after injection into cultured cells reveals that in addition to its direct effect on cytoplasmic dynein this antibody reduces the efficiency with which dynactin associates with microtubules, indicating that the antibody perturbs the cooperative binding of dynein and dynactin to microtubules during spindle/aster assembly. These results indicate that microtubule minus ends are focused into spindle poles in vertebrate somatic cells through a mechanism that involves contributions from both centrosomes and structural and microtubule motor proteins. Furthermore, these findings, together with the recent observation that cytoplasmic dynein is required for the formation and maintenance of acentrosomal spindle poles in extracts prepared from Xenopus eggs (Heald, R., R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, A. Hyman, and E. Karsenti. 1996. Nature (Lond.). 382: 420-425) demonstrate that there is a common mechanism for focusing free microtubule minus ends in both centrosomal and acentrosomal spindles. We discuss these observations in the context of a search-capture-focus model for spindle assembly.  相似文献   

15.
The cytoskeletal components of hamster oocytes, zygotes, and spontaneously activated parthogenotes were examined after immunocytochemical labeling. Microtubules were found only in the anastral, tangentially arranged second meiotic spindle of unfertilized oocytes. Taxol treatment of unfertilized oocytes greatly augmented astral microtubules in both the metaphase II spindle and the cortex. Disruption of the meiotic spindle microtubules with nocodazole resulted in cortical chromosomal scattering. During hamster sperm incorporation and pronuclear formation, no sperm aster was detected in association with the male DNA. Instead, a large overlapping array of microtubules assembled in the cortex. By mitosis, this interphase array disassembled and an anastral metaphase spindle formed. Microtubule and chromatin configurations were also imaged in hamster oocytes injected with human sperm. Astral microtubules were absent from the sperm centrosome. The implications of these results are discussed in relation to the hamster oocyte penetration assay, a test commonly used by in vitro fertilization clinics to demonstrate the fertilizing ability of human sperm. We conclude that since hamsters and humans follow different methods of centrosome inheritance, maternal and paternal, respectively, the hamster may be an inappropriate model for exploring microtubule and centrosomal defects in humans or for assaying postinsemination forms of human male fertility defects.  相似文献   

16.
A novel human protein with a molecular mass of 55 kD, designated RanBPM, was isolated with the two-hybrid method using Ran as a bait. Mouse and hamster RanBPM possessed a polypeptide identical to the human one. Furthermore, Saccharomyces cerevisiae was found to have a gene, YGL227w, the COOH-terminal half of which is 30% identical to RanBPM. Anti-RanBPM antibodies revealed that RanBPM was localized within the centrosome throughout the cell cycle. Overexpression of RanBPM produced multiple spots which were colocalized with gamma-tubulin and acted as ectopic microtubule nucleation sites, resulting in a reorganization of microtubule network. RanBPM cosedimented with the centrosomal fractions by sucrose- density gradient centrifugation. The formation of microtubule asters was inhibited not only by anti- RanBPM antibodies, but also by nonhydrolyzable GTP-Ran. Indeed, RanBPM specifically interacted with GTP-Ran in two-hybrid assay. The central part of asters stained by anti-RanBPM antibodies or by the mAb to gamma-tubulin was faded by the addition of GTPgammaS-Ran, but not by the addition of anti-RanBPM anti- bodies. These results provide evidence that the Ran-binding protein, RanBPM, is involved in microtubule nucleation, thereby suggesting that Ran regulates the centrosome through RanBPM.  相似文献   

17.
Previously, we have identified the association of G protein beta subunit (Gbeta) with mitotic spindles in various mammalian cells. Since microtubules are the main component of mitotic spindles, here we have isolated bovine brain microtubules and purified Gbeta subunit to identify the close association of Gbeta subunit with purified brain microtubules and have shown the direct incorporation of Gbeta subunit into the microtubules both in vitro and in vivo. It was found that: (1) microtubular fraction isolated from bovine brain contained Gbeta subunit, (2) coimmunoprecipitation demonstrated that Gbeta subunit could be coprecipitated with tubulin, (3) addition of purified Gbeta subunit into cytosolic extract for microtubule assembly caused direct incorporation of Gbeta subunit into assembled microtubules and increased the association of microtubule-associated proteins with microtubules, and (4) incubation of exogenous Gbeta subunit with detergent-permeabilized cells resulted in direct incorporation of Gbeta subunit into microtubule fibers and depolymerized tubulin molecules. We conclude that G protein beta subunit is closely associated with microtubules and may play an important role in the regulation of microtubule formation in addition to its regulatory role in cellular signal transduction.  相似文献   

18.
In eukaryotic cells, tubulin polymerization must be regulated precisely during cell division and differentiation. To identify new mechanisms involved in cellular microtubule formation, we isolated an activity that suppresses microtubule nucleation in vitro. The activity was due to a small acidic polypeptide of 4.7 kDa which we named MINUS (microtubule nucleation suppressor). MINUS inhibited tau- and taxol-mediated microtubule assembly in vitro and was inactivated by dephosphorylation. The protein was purified to homogeneity from cultured neural (PC12) cells and bovine brain. Microinjection of MINUS caused a transient loss of dynamic microtubules in Vero cells. The results suggest that MINUS acts with a novel mechanism on tubulin polymerization, thus regulating microtubule formation in living cells.  相似文献   

19.
Bipolar meiotic spindle formation without chromatin   总被引:1,自引:0,他引:1  
Establishing a bipolar spindle is an early event of mitosis or meiosis. In somatic cells, the bipolarity of the spindle is predetermined by the presence of two centrosomes in prophase. Interactions between the microtubules nucleated by centrosomes and the chromosomal kinetochores enable the formation of the spindle. Non-specific chromatin is sufficient, however, to promote spindle assembly in Xenopus cell-free extracts that contain centrosomes [1,2]. The mouse oocyte represents an excellent model system in which to study the mechanism of meiotic spindle formation because of its size, transparency and slow development. These cells have no centrioles, and their multiple microtubule-organizing centers (MTOCs) are composed of foci of pericentriolar material [3,4]. The bipolarity of the meiotic spindle emerges from the reorganization of these randomly distributed MTOCs [4]. Regardless of the mechanisms involved in this reorganization, the chromosomes seem to have a major role during spindle formation in promoting microtubule polymerization and directing the appropriate rearrangement of MTOCs to form the two poles [5]. Here, we examined spindle formation in chromosome-free mouse oocyte fragments. We found that a bipolar spindle can form in vivo in the absence of any chromatin due to the establishment of interactions between microtubule asters that are progressively stabilized by an increase in the number of microtubules involved, demonstrating that spindle formation is an intrinsic property of the microtubule network.  相似文献   

20.
The centrosome structure was studied in differentiating small intestine enterocytes of mouse embryos (day 16 to 17 of gestation) and newborn mice. It is shown that fine structure of the centrosome in embryonic enterocytes differs from that found in cells of the adult mice. The centrosome of the crypt cells is more active: a greater number of cytoplasmic microtubules terminates there; mother centriole has two types of satellites; both centrioles are surrounded by fine fibrillar material. In 20% of crypt cells, replication of centrioles is observed. In the upper part of the villus of embryonic intestine, there still are two centrioles per cell, but they are located 3-7 um apart and devoid of any cytoplasmic microtubules attached to or directed toward them. In newborn mice, centrosomes of cells located at the bottom of the crypt are less active, as compared with centrosomes of embryonic cells. There are 1-3 satellites on mother centriole and few cytoplasmic microtubules closing to the centrosome. In 20% of cells from the bottom of the crypt centrioles are replicating. In the lateral part of the crypt, centrosome is inactive: centrioles are located 1-3 um apart and do not replicate. In the villus, centrioles undergo changes similar to those observed in the villus of adult mice. Centrioles loose portions of microtubule triplets. Near the top of the villus, only one centriole was found in two of 25 studied cells. In the enterocytes of the murine small intestine, centrioles are always located far from nuclei and close to the apical cell surface (1-3 um from the brush border). Centrioles never form a primary cilium and are not attached to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号