首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Some studies have suggested that nitric oxide (NO) may cause platelet dysfunction. We present an ARDS patient who need this treatment, with a transient alteration of platelet function and a significant prolongation of bleeding time.  相似文献   

2.
The pulmonary vasculature site of action of nitric oxide (NO) in patients with acute respiratory distress syndrome (ARDS) is still unknown. Seven patients were studied during the early stage of ARDS. The bedside pulmonary artery single-occlusion technique, which allows estimation of the pulmonary capillary pressure (Pcap) and segmental pulmonary vascular resistance, was used without NO or with increasing inhaled NO concentrations (15 and 25 parts per million [ppm]). Systemic circulatory parameters remained unaltered during 15 ppm NO inhalation, whereas 25 ppm NO inhalation slightly decreased mean systemic arterial pressure from 76.7 +/- 5.1 (mean +/- SEM) to 69 +/- 5.2 mm Hg (p < 0.01). Mean pulmonary arterial pressure (Ppam) and mean pulmonary capillary pressure (Pcapm) fell during 25 ppm NO inhalation from 27.4 +/- 3.5 to 21 +/- 2.2 mm Hg (p < 0.001) and from 14.8 +/- 1.5 to 10.7 +/- 1.4 mm Hg (p < 0.001) respectively, the total pulmonary resistance decreased by 28% (p < 0.01). The resistance of the capillary-venous compartment fell during 25 ppm NO inhalation from 100 +/- 16 to 47 +/- 16 dyn x s x m(2) x cm(-5) (p < 0.01), whereas the pulmonary arterial resistance was unchanged. In these patients NO inhalation during the early stage of ARDS reduces selectively Ppam and Pcapm by decreasing the pulmonary capillary-venous resistance. This latter effect may reduce the filtration through the capillary bed and hence alveolar edema during ARDS.  相似文献   

3.
OBJECTIVE: To evaluate the effect of treatment with a combination of nitric oxide synthase inhibitors and inhaled nitric oxide on systemic hypotension during sepsis. DESIGN: Prospective, randomized, controlled study on anesthetized animals. SETTING: A cardiopulmonary research laboratory. SUBJECTS: Forty-seven male adult Sprague-Dawley rats. INTERVENTIONS: Animals were anesthetized, mechanically ventilated with room air, and randomized into six groups: a) the control group (C, n=6) received normal saline infusion; b) the endotoxin-treated group received 100 mg/kg i.v. of Escherichia coli lipopolysaccharide (LPS, n=9); c) the third group received LPS, and 1 hr later the animals were treated with 100 mg/kg i.v. Nw-nitro-L-arginine (LNA, n=9); d) the fourth group received LPS, and after 1 hr, the animals were treated with 100 mg/kg i.v. aminoguanidine (AG, n=9); e) the fifth group received LPS and 1 hr later was treated with LNA plus 1 ppm inhaled nitric oxide (LNA+NO, n=7); f) the sixth group received LPS and 1 hr later was treated with aminoguanidine plus inhaled NO (AG+NO, n=7). Inhaled NO was administered continuously until the end of the experiment. MEASUREMENTS AND MAIN RESULTS: Systemic mean blood pressure (MAP) was monitored through a catheter in the carotid artery. Mean exhaled NO (ENO) was measured before LPS (T0) and every 30 mins thereafter for 5 hrs. Arterial blood gases and pH were measured every 30 mins for the first 2 hrs and then every hour. No attempt was made to regulate the animal body temperature. All the rats became equally hypothermic (28.9+/-1.2 degrees C [SEM]) at the end of the experiment. In the control group, blood pressure and pH remained stable for the duration of the experiment, however, ENO increased gradually from 1.3+/-0.7 to 17.6+/-3.1 ppb after 5 hrs (p< .05). In the LPS treated rats, MAP decreased in the first 30 mins and then remained stable for 5 hrs. The decrease in MAP was associated with a gradual increase in ENO, which was significant after 180 mins (58.9+/-16.6 ppb) and reached 95.3+/-27.5 ppb after 5 hrs (p< .05). LNA and AG prevented the increase in ENO after LPS to the level in the control group. AG caused a partial reversal of systemic hypotension, which lasted for the duration of the experiment. LNA reversed systemic hypotension almost completely but only transiently for 1 hr, and caused severe metabolic acidosis in all animals. The co-administration of NO with AG had no added benefits on MAP and pH. In contrast, NO inhalation increased the duration of the reversal in MAP after LNA, alleviated the degree of acidosis, and decreased the mortality rate (from 55% to 29%). CONCLUSIONS: In this animal model, LPS-induced hypotension was alleviated slightly and durably after AG, but only transiently after LNA. Furthermore, co-administration of NO with AG had no added benefits but alleviated the severity of metabolic acidosis and mortality after LNA. We conclude that nitric oxide synthase (NOS) inhibitors, given as a single large bolus in the early phase of sepsis, can exhibit some beneficial effects. Administration of inhaled NO with NOS inhibitors provided more benefits in some conditions and therefore may be a useful therapeutic combination in sepsis. NO production in sepsis does not seem to be a primary cause of systemic hypotension. Other factors are likely to have a major role.  相似文献   

4.
BACKGROUND: We describe the hemodynamic response to initiation and withdrawal of inhaled nitric oxide (NO) in infants with pulmonary hypertension after surgical repair of total anomalous pulmonary venous connection. METHODS: Between January 1, 1992, and January 1, 1995, 20 patients underwent repair of total anomalous pulmonary venous connection. Nine patients had postoperative pulmonary hypertension and received a 15-minute trial of inhaled NO at 80 parts per million. Five of these patients received prolonged treatment with NO at 20 parts per million or less. RESULTS: Mean pulmonary artery pressure decreased from 35.6 +/- 2.4 to 23.7 +/- 2.0 mm Hg (mean +/- standard error of the mean) (p = 0.008), and pulmonary vascular resistance decreased from 11.5 +/- 2.0 to 6.4 +/- 1.0 U.m2 (p = 0.03). After prolonged treatment with NO, pulmonary artery pressure increased transiently in all patients when NO was discontinued. CONCLUSIONS: After operative repair of total anomalous pulmonary venous connection, inhaled NO selectively vasodilated all patients with pulmonary hypertension. Withdrawal of NO after prolonged inhalation was associated with transient rebound pulmonary hypertension that dissipated within 60 minutes. Appreciation of rebound pulmonary hypertension may have important implications for patients with pulmonary hypertensive disorders when interruption of NO inhalation is necessary or when withdrawal of NO is planned.  相似文献   

5.
Bacterial endotoxin (LPS) releases many mediators such as interleukins, tumour necrosis factor, oxygen free radicals, toxic eicosanoids, platelet activating factor, and nitric oxide (NO). LPS is a potent inducer of inducible nitric oxide synthase (iNOS). Large amounts of NO (made by iNOS) and peroxynitrite, among other factors, are responsible for the late phase of hypotension, vasoplegia, cellular suffocation, apoptosis, lactic acidosis and multiorgan failure in endotoxic shock. Indeed, experimental and clinical use of NOS inhibitors, which do not differentiate clearly between constitutive endothelial NOS (ceNOS) and iNOS, prevents LPS-induced hypotension. However, many detrimental effects of such NOS inhibitors are also reported, including increases in pulmonary resistance, decreases in cardiac output and organ perfusion, and even an increase in mortality of experimental animals. We believe that, in lungs, NO made by ceNOS plays a protective role against the pneumotoxic effects of LPS-released lipids such as thromboxane, leukotrienes and PAF. This is why selective iNOS inhibitors like aminoguanidine or thiourea derivatives might be preferred over nonselective NOS inhibitors for the treatment of septic shock. However, since iNOS-derived NO seems to have more than just a destructive action, the selective iNOS inhibition may be not as beneficial as expected. Accordingly, inhalation of NO gas or NO-donors in septic shock might be a complementary treatment to the use of NOS inhibitors.  相似文献   

6.
The role of nitric oxide in the alterations of liver carbohydrate metabolism during septic shock has been studied in fed and starved animals injected with bacterial lipopolysaccharide (LPS). One h after LPS injection an hyperglycemic peak was observed followed by hypoglycemia when the plasma nitric oxide concentration increased. However, in animals pharmacologically treated with nitric oxide donors only hypoglycemia was observed. In isolated hepatocytes from LPS treated rats an impairment of the gluconeogenic flux was observed accompanied by a decrease in the mRNA levels of the glucose transporter GLUT-2 and phosphoenolpyruvate carboxykinase, at the time that increased the mRNA levels of the inducible form of nitric oxide synthase. These results suggest that part of the effects observed in response to LPS challenge are due to early signaling molecules (cytokines and other factors molecules) whereas other effects can be attributed to nitric oxide synthesis which in turn has specific effects on hepatic metabolism.  相似文献   

7.
The aim of this study was to determine whether low-dose inhalation of nitric oxide (NO) improves pulmonary haemodynamics and gas exchange in patients with stable idiopathic pulmonary fibrosis (IPF). The investigation included 10 IPF patients breathing spontaneously. Haemodynamic and blood gas parameters were measured under the following conditions: 1) breathing room air; 2) during inhalation of 2 parts per million (ppm) NO with room air; 3) whilst breathing O2 alone (1 L.min-1); and 4) during combined inhalation of 2 ppm NO and O2 (1 L.min-1). During inhalation of 2 ppm NO with room air the mean pulmonary arterial pressure (Ppa 25 +/- 3 vs 30 +/- 4 mmHg) and the pulmonary vascular resistance (PVR 529 +/- 80 vs 699 +/- 110 dyn.s.cm-5) were significantly (p < 0.01) lower than levels measured whilst breathing room air alone. However the arterial oxygen tension (Pa,O2) did not improve. The combined inhalation of NO and O2 produced not only a significant (p < 0.01) decrease of Ppa (23 +/- 2 vs 28 +/- 3 mmHg) but also, a remarkable improvement (p < 0.05) in Pa,O2 (14.2 +/- 1.2 vs 11.7 +/- 1.0 kPa) (107 +/- 9 vs 88 +/- 7 mmHg)) as compared with the values observed during the inhalation of O2 alone. These findings suggest that the combined use of nitric oxide and oxygen might constitute an alternative therapeutic approach for treating idiopathic pulmonary fibrosis patients with pulmonary hypertension. However, further studies must first be carried out to demonstrate the beneficial effect of oxygen therapy on pulmonary haemodynamics and prognosis in patients with idiopathic pulmonary fibrosis and to rule out the potential toxicity of inhaled nitric oxide, particularly when used in combination with oxygen.  相似文献   

8.
Cytochrome bo is a four-subunit quinol oxidase in the aerobic respiratory chain of Escherichia coli and functions as a redox-coupled proton pump. Subunit I binds all the redox metal centers, low-spin heme b, high-spin heme o, and CuB, whose axial ligands have been identified to be six invariant histidines. This work explored the possible roles of the aromatic amino acid residues conserved in the putative transmembrane helices (or at the boundary of the membrane) of subunit I. Sixteen aromatic amino acid residues were individually substituted by Leu, except for Tyr61 and Trp282 by Phe and Phe415 by Trp. Leu substitutions of Trp280 and Tyr288 in helix VI, Trp331 in loop VII-VIII, and Phe348 in helix VIII reduced the catalytic activity, whereas all other mutations did not affect the in vivo activity. Spectroscopic analyses of the purified mutant enzymes revealed that the defects were attributable to perturbations of the binuclear center. On the basis of these findings and recent crystallographic studies on cytochrome c oxidases, we discuss the possible roles of the conserved aromatic amino acid residues in subunit I of the heme-copper terminal oxidases.  相似文献   

9.
Primary pulmonary hypertension is a disease with a high mortality rate and for which there is no satisfactory medical treatment. The safety of long-term inhalation of nitric oxide (NO) as a treatment is described. A 9-year-old girl inhaled NO for 32 weeks, accompanied with oral administration of beraprost sodium. Although NO did not improve her long-term prognosis, it eased the patient's dyspnea and increased her blood oxygenation. At doses of 20 ppm or more, attempts to withdraw from inhaled NO seemed to lead to an immediate elevation of the pulmonary artery pressure. This rebound phenomenon did not happen at doses under 5 ppm. This case study suggests that long-term inhalation of NO is safe and effective, but that pulmonary hypertension may rebound following withdrawal at higher doses of NO.  相似文献   

10.
Inducible nitric oxide (NO) synthase (iNOS)-mediated hyperproduction of NO in airways has been reported in asthmatic patients. However, the role of NO in the pathogenesis of asthma has not yet been fully elucidated. The aim of this study was to examine whether the iNOS-derived NO affects airway microvascular leakage, one of the characteristic features of asthmatic airway inflammation. Guinea-pigs were exposed to lipopolysaccharide (LPS) (1 mg x mL(-1)) by inhalation in order to induce iNOS in the airways, and the histochemical staining of reduced nicotinamide-adenine dinucleotide phosphate (NADPH)-diaphorase activity was determined 5 h after the inhalation to confirm the iNOS induction. Airway microvascular leakage to subthreshold doses of substance P (0.3 microg x kg(-1), i.v.) was also examined in the absence and presence of an iNOS inhibitor (aminoguanidine) in LPS- or saline-exposed (control) animals using Evans blue dye and Monastral blue dye. In the LPS-exposed animals, increased NADPH-diaphorase activity was observed in the airway microvasculature compared with the control animals. Substance P caused significant airway microvascular leakage assessed by Evans blue dye in all airway levels in the LPS-exposed animals but not in the control group. This was also confirmed by Monastral blue dye extravasation. Aminoguanidine abolished this LPS-induced enhancement of plasma leakage to substance P without changing the systemic blood pressure. These results may suggest that inducible nitric oxide synthase-derived nitric oxide is capable of potentiating neurogenic plasma leakage in airways.  相似文献   

11.
BACKGROUND: We previously reported that inhaled nitric oxide (NO) improved pulmonary function following smoke inhalation. This study evaluates the physiologic mechanism by which inhaled NO improves pulmonary function in an ovine model. METHODS: Forty-eight hours following wood smoke exposure to produce a moderate inhalation injury, 12 animals were anesthetized and mechanically ventilated (FIO2, 0.40; tidal volume, 15 mL/kg; PEEP, 5 cm H2O) for 3 hours. For the first and third hours, each animal was ventilated without NO: for the second hour, all animals were ventilated with 40 ppm NO. Cardiopulmonary variables and blood gases were measured every 30 minutes. The multiple inert gas elimination technique (MIGET) was performed during the latter 30 minutes of each hour. The data were analyzed by ANOVA. RESULTS: Pulmonary arterial hypertension and hypoxemia following smoke inhalation were significantly attenuated by inhaled NO compared with the values without NO (p < 0.05, ANOVA). Smoke inhalation resulted in a significant increase in blood flow distribution to low VA/Q areas (VA/Q < 0.10) with increased VA/Q dispersion. These changes were only partially attenuated by the use of inhaled NO. The SF6 (sulfur hexafluoride) retention ratio was also decreased by inhaled NO. Peak inspiratory pressures and pulmonary resistance values were not affected by inhaled NO. CONCLUSIONS: Inhaled NO moderately improved VA/Q mismatching following smoke inhalation by causing selective pulmonary vasodilation of ventilated areas in the absence of bronchodilation. This modest effect appears to be limited by the severe inflammatory changes that occur as a consequence of smoke exposure.  相似文献   

12.
OBJECTIVES: Although endogenous nitric oxide (NO) is an excitatory mediator in the central nervous system, inhaled NO is not considered to cause neurologic side effects because of its short half-life. This study was motivated by a recent case report about neurologic symptoms and our own observation of severe electroencephalogram (EEG) abnormalities during NO inhalation. DESIGN: Blind, retrospective analyses of EEGs which were registered before, during, and after NO inhalation. EEG was classified in a 5-point rating system by an independent electroencephalographer who was blinded to the patients' clinical histories. Comparisons were made with the previous evaluation documented at recording. Other EEG-influencing parameters such as oxygen saturation, hemodynamics, electrolytes, and pH were evaluated. SETTING: Pediatric intensive care unit of a tertiary care university children's hospital. PATIENTS: Eleven ventilated, long-term paralyzed, sedated children (1 mo to 14 yrs) who had EEG or clinical assessment before NO treatment and EEG during NO inhalation. They were divided into two groups according to the NO-indication (e.g., congenital heart defect, acute respiratory distress syndrome). MEASUREMENTS AND MAIN RESULTS: All 11 patients had an abnormal EEG during NO inhalation. EEG-controls without NO showed remarkable improvement. EEG abnormalities were background slowing, low voltage, suppression burst (n = 2), and sharp waves (n = 2) independent of patients' age, NO-indication, and other EEG-influencing parameters. CONCLUSIONS: These preliminary data suggest the occurrence of EEG-abnormalities after application of inhaled NO in critically ill children. We found no correlation with other potential EEG-influencing parameters, although clinical state, medication, or hypoxemia might contribute. Comprehensive, prospective, clinical assessment regarding a causal relationship between NO-inhalation and EEG-abnormalities and their clinical importance is needed.  相似文献   

13.
The authors review published data devoted to a new trend in intensive care of pulmonary hypertension: therapy of right ventricular heart failure and gas exchange disorders caused by impaired ventilation-perfusion relationship by inhalation of nitrogen oxide (NO). Mechanisms of NO effect, its metabolism, method of application and safety regulations, and doses and efficacy in various clinical situations (pulmonary hypertension in heart diseases, transplantations of the heart and lungs, respiratory distress syndrome, persistent pulmonary hypertension of the newborns) are analyzed. The first clinical experience gained by the authors demonstrated a favorable effect of NO therapy on the central hemodynamics in patients with acquired valvular defects and patients subjected to orthotopic transplantations of the heart. Approaches to research and pathogenetic validation of NO therapy are outlined.  相似文献   

14.
Hypotension following administration of lipopolysaccharide may be due to excessive production of the potent vasodilator nitric oxide brought about by induction of nitric oxide synthase. The purpose of this study was to determine in conscious, fasted rats what role nitric oxide played in lipopolysaccharide-induced hypotension. When examined by Western immunoblot analysis, inducible nitric oxide synthase immunoreactivity was detected in the aorta at 3 hours and increased over time following administration of intraperitoneal lipopolysaccharide (20 mg/kg). When compared with saline-treated control rats, significant hypotension was observed at 2, 4, and 6 hours following lipopolysaccharide treatment. Blood pressure at 2 hours did not differ significantly from that at 6 hours. Using the Griess reaction to quantify plasma levels of nitrates and nitrites as an index of systemic nitric oxide production, an augmentation in the formation of these nitric oxide metabolites was demonstrated at 4 and 6 hours but not at 2 hours. Subcutaneous administration of the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (5 mg/kg) prevented lipopolysaccharide-induced hypotension, an effect reversed by subcutaneous L-arginine but not D-arginine (350 mg/kg). However, nitric oxide synthase inhibition did not attenuate the ability of lipopolysaccharide to increase plasma nitrate/nitrite levels. These data indicate that lipopolysaccharide-induced production of nitric oxide metabolites does not correlate with lipopolysaccharide-induced hypotension.  相似文献   

15.
Inhaled nitric oxide lowers pulmonary capillary pressure (PCP) in animals and in patients with acute respiratory distress syndrome (ARDS). A dose-response relationship in patients with ARDS has not yet been established. Therefore, we studied the effects of four concentrations of nitric oxide (1, 10, 20 and 40 volumes per million (vpm)) in random order, on PCP in 19 patients with ARDS. PCP was estimated by visual analysis of the pressure decay curve after balloon inflation of the pulmonary artery catheter. Haemodynamic and gas exchange variables were measured at each nitric oxide concentration. Patients were classified as responders when PCP decreased by at least 2 mm Hg after nitric oxide 20 vpm. In responders (n = 8), nitric oxide decreased PCP and post-capillary vascular resistance dose-dependently and changed longitudinal distribution of pulmonary vascular resistance with a maximum effect at 20 vpm. In non-responders (n = 11), PCP did not change. In both groups, the nitric oxide-induced decrease in pre-capillary vascular resistance was small with a maximum effect at 1 vpm. In ARDS, vasodilatation of pre-capillary vessels is achieved at low concentrations of nitric oxide, whereas the effect of nitric oxide on postcapillary vessels is variable. Higher concentrations may be required for optimal post-capillary vasodilatation in a subgroup of ARDS patients.  相似文献   

16.
17.
We investigated nitric oxide (NO) production and the presence of nitric oxide synthase (NOS) in the mammary gland by use of an organ culture system of rat mammary glands. Mammary glands were excised from the inguinal parts of female Wistar-MS rats primed by implantation with pellets of 17beta-estradiol and progesterone and were diced into approximately 3-mm cubes. Three of these cubes were cultured with 2 ml of 10% FCS/DMEM plus carboxy-PTIO (an NO scavenger, 100 microM) in the presence or absence of LPS (0.5 microgram/ml) for 2 days. The amount of NO produced spontaneously by the cultured mammary glands was relatively minute at the end of the 2-day culture period, and the NO production was significantly enhanced by the presence of LPS. This enhancement of NO production was completely eliminated by addition of hydrocortisone (3 microM), an inhibitor of inducible NOS (iNOS), to the incubation medium. Immunoblot analyses with specific antisera against NOS isoforms such as iNOS, endothelial NOS (eNOS), and brain NOS (bNOS) showed immunoreactive bands of iNOS (122 +/- 2 kD) and eNOS (152 +/- 3 kD) in extracts prepared from the mammary glands in the culture without LPS. The immunoreactive band of iNOS was highly intense after the treatment of mammary glands with LPS, whereas the corresponding eNOS immunoreactive band was faded. The immunohistochemical study of anti-iNOS antiserum on frozen sections of the cultured mammary glands showed that an immunoreactive substance with the antiserum was localized to the basal layer (composed of myoepithelial cells of alveoli and lactiferous ducts) of the mammary epithelia and to the endothelium of blood vessels that penetrated into the interstitium of the mammary glands. Histochemical staining for NADPH-diaphorase activity, which is identical to NOS, showed localization similar to that of iNOS in the mammary glands. Similar observations were noted in the immunohistochemistry of eNOS. In contrast, the immunoreactive signal with the bNOS antiserum was barely detected in the epithelial parts of alveoli and lactiferous ducts of the mammary glands. These observations demonstrate that three isoforms of NOS are present not only in the endothelium of blood vessels but also in the parenchymal cells (the glandular epithelium) of the rat mammary gland, such as epithelial cells and myoepithelial cells, and suggest that NO may have functional roles in the physiology of the mammary glands.  相似文献   

18.
We examined the effects of nitric oxide (NO) on the differentiation and mineralization of newborn rat calvarial osteoblastic cells (ROB cells) using exogenous NO donors, sodium nitroprusside, 3-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-propanamin e (NOC-7) and 2,2'-(hydroxynitrosoydrazino)bis-ethanamine (NOC-18). Sodium nitroprusside and NOC-7 dose-dependently enhanced the rate of production of intracellular cGMP in ROB cells and the rat clonal osteogenic cell line ROB-C26. We used NOC (NOC is the trade name for NO complex manufactured by Dojindo, Kumamoto, Japan) as an NO donor in our experiments because sodium nitroprusside exhibited a marked cytotoxicity. Northern blot analysis revealed that the level of mRNA for osteocalcin, one of the osteoblastic differentiation markers, was enhanced in the ROB cells, which was continuously treated by NOC-18. NOC-18, however, did not affect the level of mRNA for alkaline phosphatase and the activity of alkaline phosphatase. Both the number and the total area of mineralized nodules that are a model of in vitro bone formation were shown to be increased by 10(-5) M NOC-18. Our data suggest that NO might act as a local regulator of the metabolism of osteoblastic cells.  相似文献   

19.
BACKGROUND: Measurement of nitric oxide (NO) in exhaled air shows promise as a non-invasive method of detecting lung inflammation. However, variable concentrations of NO are measured in environmental air. The aim of this study was to verify a possible relationship between exhaled NO and atmospheric NO values during high atmospheric NO days. METHOD: Exhaled air from 78 healthy non-smokers of mean age 35.3 years was examined for the presence of NO using a chemiluminescence NO analyser and NO levels were expressed as part per billion (ppb). The exhaled air from all the subjects was collected into a single bag and into two sequential bags. Before each test atmospheric NO was measured. RESULTS: The mean (SE) concentration of exhaled NO collected into the single bag was 17.1 (0.6) ppb while the mean values of exhaled NO in bags 1 and 2 were 16.7 (1.3) ppb and 13.8 (1.2) ppb, respectively. The atmospheric NO concentrations registered before each test varied from 0.4 to 71 ppb. There was a significant correlation between exhaled NO in the single bag and atmospheric NO (r = 0.38, p = 0.001). The atmospheric NO concentration also correlated with exhaled NO both in bag 1 (r = 0.44, p = 0.0001) and in bag 2 (r = 0.42, p = 0.0001). These correlations disappeared with atmospheric NO concentrations lower than 35 ppb. CONCLUSIONS: These results indicate a relationship between atmospheric NO and NO levels measured in exhaled air, therefore exhaled NO should not be measured on very high atmospheric NO days.  相似文献   

20.
We investigated whether nitric oxide (NO) exerts an inhibition on its own synthesis in the gastric myenteric plexus in rats. Nonadrenergic, noncholinergic relaxations in response to transmural electrical stimulation (TS) were markedly antagonized by NG-nitro-L-arginine methyl ester, (10(-4) M) and abolished by tetrodotoxin (10(-6) M). Pretreatment with various NO donors (3-morpholino-sydnonymide [SIN-1 (3 x 10(-7) to 3 x 10(-6) M)], S-nitroso-N-acetylpenicillamine (10(-6) to 10(-5) M), sodium nitroprusside (10(-8) to 3 x 10(-8) M) and 8-bromoquanosine 3', 5'-cyclic monophosphate [8-bromo-cGMP (10(-6) to 3 x 10(-6) M)]) significantly inhibited TS-evoked nonadrenergic, noncholinergic relaxations in a dose-dependent manner. In contrast, vasoactive intestinal polypeptide (10(-8) M)-induced relaxations were not affected by SIN-1 or 8-bromo-cGMP. TS evoked a significant increase in 3H-citrulline formation, which was completely abolished by calcium-free medium, NG-nitro-L-arginine methyl ester, (10(-4) M) and tetrodotoxin (10(-6) M). 3H-citrulline formation evoked by TS was significantly inhibited by SIN-1 (10(-7) to 10(-5) M) and 8-bromo-cGMP (10(-7) to 10(-5) M) in a dose-dependent manner. The inhibitory effect of SIN-1 was partially prevented by 1H-[1,2, 4]oxadiazolo[3,4-a]quinoxalin-1-one (10(-5) M), a guanylate cyclase inhibitor. We conclude that NO synthesis in the gastric myenteric plexus is negatively regulated by NO and cGMP. This suggests an autoregulatory feedback mechanism of NO synthesis in the gastric myenteric plexus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号