首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为满足高速、高精度射频电路的要求,设计了一款新型带高温曲率补偿的低温漂、高电源抑制比的带隙基准电压源。为避免运放的失调电压对基准源精度产生影响,电路没有采用运放结构生成基准电压。利用双极型晶体管基极-发射极电压VBE的负温度特性,在高温时对基准电压进行曲率补偿,减小基准电压的温漂。电路基于180 nm BiCMOS工艺线,采用Cadence仿真验证。在-40~85℃温度范围内,5 V电源电压下,温度系数为5.7×10-6/℃,电源电压抑制比可达到-88 dB。  相似文献   

2.
针对传统带隙基准源无法补偿高阶温度项导致温度系数较差的问题,提出了一种高阶曲率补偿电路。电路利用VBE线性补偿原理,使用特定的电路结构产生与双极型晶体管基极-发射极电压开口曲率相反方向的补偿电压,达到降低基准电压高阶温度项的目的。电路基于SMIC 0.18μm工艺进行流片验证,测试结果表明,温度由-40℃变化到125℃时,使用曲率补偿后带隙基准电压的温度系数由14.3×10-6/℃降低到了3.18×10-6/℃。  相似文献   

3.
基于SMIC 0.18μm CMOS工艺,设计了一种带分段曲率补偿的低温度系数的高阶带隙基准电压源。首先设计了传统一阶带隙基准,温度系数最低可以达到13×10-6/℃。在传统一阶带隙基准电压源的基础上,加入低功耗的分段补偿电路实现了高阶补偿,在显著降低了温度系数的同时,实现了低功耗,并且可以实现一阶、高阶基准电压的可控制输出。仿真结果显示,在-40~125℃温度范围内,温度系数最低可以达到3.5×10-6/℃,比一阶基准降低约73%,线性调整率为0.08%,PSRR在1000 Hz可以达到-61 dB,静态电流为4.7μA。高阶基准源电路在实现低温度系数的同时兼顾了较低功耗,在同类型电路中具有明显优势。  相似文献   

4.
针对传统无运放带隙基准电压源温度特性差的问题,设计了一种低温漂的无运放带隙基准电压源电路。设计中通过电流镜以及环路反馈的方法来代替传统运放对电路进行钳位,避免了运放输入失调电压对带隙基准电压精度的影响。同时基于华虹0.35μm BCD工艺,利用工艺库中温度系数不同的电阻来产生与温度相关的非线性项,从而对三极管负温度系数电压中的高阶非线性项进行补偿,实现了无运放带隙基准的低温漂特性。通过Cadence Spectre对电路进行仿真,仿真结果表明:在-55~125℃温度范围内,输入电压为5.5 V时,带隙基准电压的温漂系数为1.949×10-6/℃;在10 kHz时,电源抑制比达到71.5 dB,在1 MHz时,电源抑制比达到46.3 dB。  相似文献   

5.
为了进一步减小基准电压源的温度系数,针对传统的基准电路无法补偿BJT管高阶系数温漂影响的问题,提出了一种带电流补偿结构的带隙基准源。补偿电路结构采用双支路提供不同温度系数的补偿电流的方式,用于调节基础结构在不同温度段产生的温漂。另外根据补偿原理进行结构的改进,提出两种设计结构的优化结果,同时使用电阻修调结构矫正不同工艺角下的电压温度漂移。电路采用0.18μm BCD工艺实现。仿真结果表明,该带隙基准源在-55~+125℃温度范围内,最大输出基准电压变化为0.2394 mV,温度系数为1.078×10-3/℃,10 Hz频率时电源抑制比-77 dB。使用蒙特卡洛方法进行仿真,其失调电压平均值为1.5667 mV。已应用于某一高精度的数模混合电源芯片中。  相似文献   

6.
在0.18 μm标准CMOS工艺下,设计了一种低温漂基准电压源。该基准电压源由启动电路、带隙基准核电路、偏置电路、高阶补偿电路四部分构成。通过在低温段进行2阶补偿、在高温段进行高阶补偿,使得基准电压源输出在设计标准下趋于稳定。仿真结果表明,当电源电压为1.8 V、温度范围为-25 ℃~125 ℃时,该基准电压源的温度系数为3.12 ×10–6/℃。  相似文献   

7.
支知渊  唐威  魏海龙  季赛健  尤路 《微电子学》2016,46(6):746-749, 753
设计了一种可修调的高精度、低温漂、高电源电压抑制比的高阶温度补偿带隙基准电压源。在Brokaw型带隙基准电路结构的基础上,采用多晶硅电阻负温度系数补偿技术,可实现2阶曲率温度补偿,减小了基准电压的温漂;设计了电阻修调网络,保证了基准电压的高精度。电路基于标准双极工艺进行设计和制造,测试结果表明:在-55 ℃~125 ℃温度范围内,15 V电源电压下,基准源输出电压为2.5(1±0.24%) V,温度系数为1.2×10-5/℃,低频时的电源电压抑制比为-102 dB,静态电流为1 mA,重载时输出电流能力为10 mA。  相似文献   

8.
基于华虹0.18μm BCD工艺,设计了一种具有高PSRR的分段温度补偿带隙基准。电路采用5 V电源进行供电,基准输出电压为1.256 V。仿真结果表明,在-45~125℃的温度范围内,TT工艺角下,传统结构的温漂系数只能达到2.048×10-5/℃。采用新型分段温度补偿的带隙基准的温漂系数为3.631×10-6/℃,相比传统结构,温度系数降低了82.3%。静态功耗为220μW。PSRR在低频可达到-102 dB,在350 kHz处有最差PSRR,但仍有-30 dB。该带隙基准适用于高精度、大电流开关电源的模拟集成电路。  相似文献   

9.
张龙  冯全源  王丹 《微电子学》2015,45(2):221-224
基于OKI 0.5 μm BCD工艺,设计了一种带曲率补偿的低温漂带隙基准源。采用Brokaw带隙基准核心结构,引入一个高阶效应的电流,对基准进行补偿。结合基准核心电路产生的无温度系数电压,利用简单的电路实现基准电流源的产生。仿真结果表明,在4.5 V供电电压下,-40 ℃~150 ℃温度范围内,基准电压的波动范围为1.1755~1.17625 V,温漂为3.9 ×10-6/℃,基准电流为3.635 μA,输出基准电流波动仅为2.2 nA,精度较高,低频时电路电源抑制比为-76 dB。  相似文献   

10.
设计了一种带有二阶曲率补偿的低温漂高精度带隙基准电压源电路,通过采用分段线性补偿原理,分别在低温和高温阶段引入与一阶基准输出电压的温度系数呈相反趋势的线性补偿电流,通过电阻叠加到一阶基准输出电压上,从而大大提高了基准电压随温度漂移的稳定性。基于UMC 0.25μm BCD工艺库进行电路设计,HSPICE仿真结果表明,在–40~+125℃内,基准电压源的温度系数为2.2×10–6/℃,电源电压为2.5~5.0 V时基准输出电压波动仅为0.451 m V,在低频时电源抑制比PSRR为–71 d B。较好地满足了低温漂、高精度、高稳定性的带隙基准电压源设计要求。  相似文献   

11.
一种采用二次曲率补偿的带隙基准源   总被引:1,自引:1,他引:0  
基于二次曲率补偿的基本原理,提出一种高精度的采用二次曲率补偿的新型带隙基准源电路,产生二次温度补偿量对传统的带隙基准源进行校正,获得更小的温度系数。该电路采用0.6μm的CMOS工艺实现。经过Spectre仿真,结果表明在-50~ 125℃的温度范围内,基准电压源的平均温度系数为4.47 ppm/℃。该基准源可以被应用于各种高精度的模拟和混合集成电路。  相似文献   

12.
提出了一种新型电流模式的带隙基准电压源结构,与传统带隙基准源不同,通过电流模式高阶曲率补偿技术,消除了高阶温度系数对基准电压的影响,得到一个与温度相关性较小的基准电压.电路采用Chartered 0.35μm工艺进行设计,仿真验证结果表明,在-40℃~125℃温度范围内,温度系数为7.25×10-6/℃,基准电压平均值为1.114 V,电源抑制比为-89.28 dB.  相似文献   

13.
周前能  徐海峰  李红娟  万天才 《微电子学》2018,48(6):765-768, 773
基于SMIC 0.18 μm CMOS工艺,设计了一种高阶温度补偿的带隙基准电压源。采用源极、漏极与栅极短接的PMOS管替代传统基准电压源中的PNP管,增加了高温区域曲率补偿电路和低温区域温度分段补偿电路。该带隙基准电压源获得了低温漂的性能。仿真结果表明,在-40 ℃~125 ℃温度范围内,该带隙基准电压源的温度系数达到1.997×10-6/℃,在频率为1 Hz、10 Hz、100 Hz、1 kHz、100 kHz时,分别获得了-77.84 dB、-77.84 dB、-77.83 dB、-77.42 dB、-48.05 dB的电源抑制比。  相似文献   

14.
提出了一种适用于高精度ADC的高精度低噪声CMOS带隙基准电路结构,通过一路恒流源作用在二极管来实现高阶曲率补偿技术,改善了传统基准电路结构在全温区电压温度系数大的问题。对于放大器的随机失配电压造成的输出电压漂移问题,采用斩波技术消除。该结构采用了TSMC 0.18μm工艺,在5 V电源电压下工作,功耗在典型条件下为1.2 mW,电路面积为0.245 mm2。测试结果显示,通过一次室温修调后,在-40℃到85℃温度区间电路的温度系数可以达到1.2×10-6/℃。  相似文献   

15.
设计了一种高阶曲率补偿低温漂系数的CMOS带隙基准电压源,采用自偏置共源共栅结构,降低了电路工作的电源电压。采用电流抽取电路结构,在高温阶段抽取与温度正相关电流,低温阶段抽取与温度负相关的电流,使得电压基准源在整个工作温度范围内有多个极值点,达到降低温漂系数的目的。在0.5μm CMOS工艺模型下,Cadence Spectre电路仿真的结果表明,在–40~+145℃范围内,温度特性得到了较大的改善,带隙基准电压源的温漂系数为7.28×10~(–7)/℃。当电源电压为2.4 V时电路就能正常工作。  相似文献   

16.
一种高温度性能的带隙基准源   总被引:1,自引:0,他引:1       下载免费PDF全文
基于OKI 0.5μm BiCMOS工艺,设计了一种低温漂的带隙基准电压源。对传统基准源的电压模式输出级进行了改进,使之形成同时包含电压模式和电流模式的混合模式输出级,提高了温度补偿的灵活性。同时设计了一种基于分段线性补偿技术的高精度曲率校正电路,精确地对基准电压的高阶温度分量进行修调。 HSPICE仿真结果表明,在5 V的电源电压下,基准输出电压为1.2156 V,在-40℃~125℃温度范围内,基准电压的温度系数为0.43×10-6/℃,低频时电路电源抑制比低于-83 dB。电源电压在3.8 V~10 V范围内变化时,基准源的线性调整率为9.2μV/V。  相似文献   

17.
设计了一种曲率补偿低温漂带隙基准电压源。采用放大器钳位的传统实现方式,在电路中加入两种不同的分段曲率补偿电路,低温阶段,设计节点电流相减产生一段负温度系数补偿电流,高温阶段,控制晶体三极管导通产生一段正温度系数补偿电流,实现了对基准电压曲率补偿,同时采用共源共栅结构以提高电路的电源抑制比。在0.18μm的TSMC工艺下,使用Cadence Spectre对电路进行仿真,仿真结果表明,在3.3 V的电源电压下,基准输出电压为1.241 V,在–40~+125℃范围内,基准电压的温度系数为3.02×10–6/℃,低频时电源抑制比(PSRR)低于–57 d B。  相似文献   

18.
一款新颖的带隙基准电压源设计   总被引:1,自引:1,他引:0  
贺炜 《电子科技》2010,23(9):21-23
基于TSMC0.5 μm CMOS工艺,设计了一款带隙基准源电路。与传统电压基准相比,该电路运用高增益的运算放大器进行内部负反馈。采用嵌套式密勒补偿,设计的低温漂、高电源抑制、低功耗的带隙基准电压源。仿真结果显示,该电路所产生的基准电压精度为13.2×10-6/℃,低频时的电源抑制为-98 dB,静态工作电流为3 μA。  相似文献   

19.
一种4 ppm/℃曲率补偿CMOS带隙基准源   总被引:1,自引:0,他引:1  
郑儒富  俞永康 《微电子学》2007,37(1):101-104
提出了一种采用新型曲率补偿技术的CMOS带隙基准源。该电路利用BJT电流和电压的指数关系,得到了高阶曲率补偿的基准电压。在-55~ 125℃温度范围内,通过HSPICE仿真验证,基准电压的温度系数不到4ppm/℃。在此基础上,实现了可调节的基准电压输出。  相似文献   

20.
基于线性分段补偿的基本原理,依据输出支路内部的温度负反馈结构,提出了一种结构简单、适应不同开口方向的高阶补偿方法。并设计了一种基于电流镜结构的低温漂、高精度的电压基准电路。CSMC 0.35 μm CMOS工艺的仿真结果表明,经高阶补偿的电压模基准,在-40~125 ℃温区范围内温度系数为2.84×10-6/℃,低频100 Hz时的PSRR达到-70.6 dB,10 kHz为-63.36 dB。当电源电压在2~3 V范围内变化时,其电压值波动为3 mV/V。整个带隙基准电压源具有较好的综合性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号