首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Verticillium wilt (VW) is a typical fungal disease affecting the yield and quality of cotton. The Trichome Birefringence-Like protein (TBL) is an acetyltransferase involved in the acetylation process of cell wall polysaccharides. Up to now, there are no reports on whether the TBL gene is related to disease resistance in cotton. In this study, we cloned a cotton TBL34 gene located in the confidence interval of a major VW resistance quantitative trait loci and demonstrated its relationship with VW resistance in cotton. Analyzing the sequence variations in resistant and susceptible accessions detected two elite alleles GhTBL34-2 and GhTBL34-3, mainly presented in resistant cotton lines whose disease index was significantly lower than that of susceptible lines carrying the allele GhTBL34-1. Comparing the TBL34 protein sequences showed that two amino acid differences in the TBL (PMR5N) domain changed the susceptible allele GhTBL34-1 into the resistant allele GhTBL34-2 (GhTBL34-3). Expression analysis showed that the TBL34 was obviously up-regulated by infection of Verticillium dahliae and exogenous treatment of ethylene (ET), and salicylic acid (SA) and jasmonate (JA) in cotton. VIGS experiments demonstrated that silencing of TBL34 reduced VW resistance in cotton. We deduced that the TBL34 gene mediating acetylation of cell wall polysaccharides might be involved in the regulation of resistance to VW in cotton.  相似文献   

2.
Verticillium wilt is threatening the world’s cotton production. The pathogenic fungus Verticillium dahliae can survive in the soil in the form of microsclerotia for a long time, colonize through the root of cotton, and invade into vascular bundles, causing yellowing and wilting of cotton leaves, and in serious cases, leading to plant death. Breeding resistant varieties is the most economical and effective method to control Verticillium wilt. In previous studies, proteomic analysis was carried out on different cotton varieties inoculated with V. dahliae strain Vd080. It was found that GhRPS6 was phosphorylated after inoculation, and the phosphorylation level in resistant cultivars was 1.5 times than that in susceptible cultivars. In this study, knockdown of GhRPS6 expression results in the reduction of SA and JA content, and suppresses a series of defensive response, enhancing cotton plants susceptibility to V. dahliae. Overexpression in Arabidopsis thaliana transgenic plants was found to be more resistant to V. dahliae. Further, serines at 237 and 240 were mutated to phenylalanine, respectively and jointly. The transgenic Arabidopsis plants demonstrated that seri-237 compromised the plant resistance to V. dahliae. Subcellular localization in Nicotiana benthamiana showed that GhRPS6 was localized in the nucleus. Additionally, the pathogen inoculation and phosphorylation site mutation did not change its localization. These results indicate that GhRPS6 is a potential molecular target for improving resistance to Verticillium wilt in cotton. This lays a foundation for breeding disease-resistant varieties.  相似文献   

3.
Verticillium wilt, mainly caused by a soil-inhabiting fungus Verticillium dahliae, can seriously reduce the yield and quality of cotton. The complex mechanism underlying cotton resistance to Verticillium wilt remains largely unknown. In plants, reactive oxygen species (ROS) mediated by Rbohs is one of the earliest responses of plants to biotic and abiotic stresses. In our previous study, we performed a time-course phospho-proteomic analysis of roots of resistant and susceptible cotton varieties in response to V. dahliae, and found early differentially expressed protein burst oxidase homolog protein D (GhRbohD). However, the role of GhRbohD-mediated ROS in cotton defense against V. dahliae needs further investigation. In this study, we analyzed the function of GhRbohD-mediated resistance of cotton against V. dahliae in vitro and in vivo. Bioinformatics analysis showed that GhRbohD possessed the conservative structural attributes of Rbohs family, 12 members of RbohD out of 57 Rbohs in cotton. The expression of GhRbohD was significantly upregulated after V. dahliae inoculation, peaking at 6 hpi, and the phosphorylation level was also increased. A VIGS test demonstrated that ROS production, NO, H2O2 and Ca2+ contents of GhRbohD-silenced cotton plants were significantly reduced, and lignin synthesis and callose accumulation were damaged, important reasons for the impairment of GhRbohD-silenced cotton’s defense against V. dahliae. The expression levels of resistance-related genes were downregulated in GhRbohD-silenced cotton by qRT-PCR, mainly involving the lignin metabolism pathway and the jasmonic acid signaling pathway. However, overexpression of GhRbohD enhanced resistance of transgenic Arabidopsis to V. dahliae challenge. Furthermore, Y2H assays were applied to find that GhPBL9 and GhRPL12C may interact with GhRbohD. These results strongly support that GhRbohD activates ROS production to positively regulate the resistance of plants against V. dahliae.  相似文献   

4.
5.
Modern flax cultivars are susceptible to many diseases; arguably, the most economically damaging of these is the Fusarium wilt fungal disease. Over the past decades international flax breeding initiatives resulted in the development of resistant cultivars. However, much remains to be learned about the mechanisms of resistance to Fusarium infection in flax. As a first step to uncover the genetic factors associated with resistance to Fusarium wilt disease, we performed a genome-wide association study (GWAS) using 297 accessions from the collection of the Federal Research Centre of the Bast Fiber Crops, Torzhok, Russia. These genotypes were infected with a highly pathogenic Fusarium oxysporum f.sp. lini MI39 strain; the wilt symptoms were documented in the course of three successive years. Six different single-locus models implemented in GAPIT3 R package were applied to a selected subset of 72,526 SNPs. A total of 15 QTNs (Quantitative Trait Nucleotides) were detected during at least two years of observation, while eight QTNs were found during all three years of the experiment. Of these, ten QTNs occupied a region of 640 Kb at the start of chromosome 1, while the remaining QTNs mapped to chromosomes 8, 11 and 13. All stable QTNs demonstrate a statistically significant allelic effect across 3 years of the experiment. Importantly, several QTNs spanned regions that harbored genes involved in the pathogen recognition and plant immunity response, including the KIP1-like protein (Lus10025717) and NBS-LRR protein (Lus10025852). Our results provide novel insights into the genetic architecture of flax resistance to Fusarium wilt and pinpoint potential candidate genes for further in-depth studies.  相似文献   

6.
[目的]筛选对烟草青枯病有防治效果的诱抗剂及混配剂,为防治烟草青枯病寻找有效的药剂及方法。[方法]对烟草植株喷施不同质量浓度的诱抗剂单剂和诱抗剂与链霉素的混剂48 h后,采用茎基部穿刺法对烟草接种青枯病菌(Ralstonia solanacearum),置于光照培养箱内培育。[结果]200 mg/L壳聚糖处理的烟草在接种烟草青枯菌后7 d诱导抗性效果达79.17%。50 mg/L苯并噻二唑(BTH)与100 mg/L链霉素混用后增效系数为139。[结论]壳聚糖在50 mg/L时就有较好的诱导烟草抗青枯病效果;BTH与链霉素混用后增效作用明显,可作为防治烟草青枯病的一个方法。  相似文献   

7.
Cotton is an important economic crop. Cotton Verticillium wilt caused by Verticillium dahliae seriously damages production. Phytosterols play roles in plant-pathogen interaction. To explore the function and related mechanism of phytosterols in the interaction between Verticillium dahliae and cotton plants, and the resistance to Verticillium wilt, in this study, we analyzed the changes of sterol composition and content in cotton roots infected by Verticillium dahliae, and identified the sterol C22-desaturase gene GhCYP710A1 from upland cotton. Through overexpressing and silencing the gene in cotton plant, and ectopically expressing the gene in Arabidopsis, we characterized the changes of sterol composition and the resistance to Verticillium wilt in transgenic plants. The infection of Verticillium dahliae resulted in the content of total sterol and each sterol category decreasing in cotton root. The ratio of stigmasterol to sitosterol (St/Si) increased, indicating that the conversion of sitosterol to stigmasterol was activated. Consistently, the expression level of GhCYP710A1 was upregulated after infection. The GhCYP710A1 has the conservative domain that is essential for sterol C22-desaturase in plant and is highly expressed in root and stem, and its subcellular location is in the endoplasmic reticulum. The ectopic expression of GhCYP710A1 gene promoted the synthesis of stigmasterol in Arabidopsis. The St/Si value is dose-dependent with the expression level of GhCYP710A1 gene. Meanwhile, the resistance to Verticillium wilt of transgenic Arabidopsis increased and the permeability of cell membrane decreased, and the content of ROS decreased after V991 (a strain of Verticillium dahliae) infection. Consistently, the resistance to Verticillium wilt significantly increased in the transgenic cotton plants overexpressing GhCYP710A1. The membrane permeability and the colonization of V991 strain in transgenic roots were decreased. On the contrary, silencing GhCYP710A1 resulted in the resistance to Verticillium wilt being decreased. The membrane permeability and the colonization of V991 were increased in cotton roots. The expression change of GhCYP710A1 and the content alteration of stigmasterol lead to changes in JA signal transduction, hypersensitivity and ROS metabolism in cotton, which might be a cause for regulating the Verticillium wilt resistance of cotton plant. These results indicated that GhCYP710A1 might be a target gene in cotton resistance breeding.  相似文献   

8.
Tomato spotted wilt virus (TSWV) is one of the most destructive diseases affecting tomato (Solanum lycopersicum) cultivation and production worldwide. As defenses against TSWV, natural resistance genes have been identified in tomato, including Sw-1a, Sw-1b, sw-2, sw-3, sw-4, Sw-5, Sw-6, and Sw-7. However, only Sw-5 exhibits a high level of resistance to the TSWV. Thus, it has been cloned and widely used in the breeding of tomato with resistance to the disease. Due to the global spread of TSWV, resistance induced by Sw-5 decreases over time and can be overcome or broken by a high concentration of TSWV. How to utilize other resistance genes and identify novel resistance resources are key approaches for breeding tomato with resistance to TSWV. In this review, the characteristics of natural resistance genes, natural resistance resources, molecular markers for assisted selection, and methods for evaluating resistance to TSWV are summarized. The aim is to provide a theoretical basis for identifying, utilizing resistance genes, and developing tomato varieties that are resistant to TSWV.  相似文献   

9.
10.
11.
12.
13.
14.
Advanced knowledge of messenger RNA (mRNA) N6-methyladenosine (m6A) and DNA N6-methyldeoxyadenosine (6 mA) redefine our understanding of these epigenetic modifications. Both m6A and 6mA carry important information for gene regulation, and the corresponding catalytic enzymes sometimes belong to the same gene family and need to be distinguished. However, a comprehensive analysis of the m6A gene family in tomato remains obscure. Here, 24 putative m6A genes and their family genes in tomato were identified and renamed according to BLASTP and phylogenetic analysis. Chromosomal location, synteny, phylogenetic, and structural analyses were performed, unravelling distinct evolutionary relationships between the MT-A70, ALKBH, and YTH protein families, respectively. Most of the 24 genes had extensive tissue expression, and 9 genes could be clustered in a similar expression trend. Besides, SlYTH1 and SlYTH3A showed a different expression pattern in leaf and fruit development. Additionally, qPCR data revealed the expression variation under multiple abiotic stresses, and LC-MS/MS determination exhibited that the cold stress decreased the level of N6 2′-O dimethyladenosine (m6Am). Notably, the orthologs of newly identified single-strand DNA (ssDNA) 6mA writer–eraser–reader also existed in the tomato genome. Our study provides comprehensive information on m6A components and their family proteins in tomato and will facilitate further functional analysis of the tomato N6-methyladenosine modification genes.  相似文献   

15.
16.
Wall-associated kinases (WAKs) are important receptor-like proteins that play major roles in plant defense against pathogens. Fusarium head blight (FHB), one of the most widespread and devastating crop diseases, reduces wheat yield and leads to quality deterioration. Although WAK gene families have been studied in many plants, systematic research on bread wheat (Triticum aestivum) and its role in FHB resistance, in particular, is lacking. In this study, we identified and characterized 320 genes of the TaWAK family in wheat distributed across all chromosomes except 4B and divided them into three phylogenetic groups. Duplication and synteny analyses provided valuable information on the evolutionary characteristics of the TaWAK genes. The gene expression pattern analysis suggested that TaWAK genes play diverse roles in plant biological processes and that at least 30 genes may be involved in the response to Fusarium infection in wheat spikes, with most of the genes contributing to pectin- and chitin-induced defense pathways. Furthermore, 45 TaWAK genes were identified within 17 hcmQTLs that are related to wheat FHB resistance. Our findings provide potential candidate genes for improving FHB resistance and insights into the future functional analysis of TaWAK genes in wheat.  相似文献   

17.
In this study, a novel T6RS.6AL translocation line, 117-6, was selected from a cross between common Chuannong25 (CN25) wheat and Qinling rye. The results of nondenaturing fluorescence in situ hybridization (ND-FISH) and PCR showed that 117-6 contained two T6RS.6AL translocation chromosomes. The distal region of the 6RS chromosome in 117-6 was mutant and showed different FISH signal patterns. When inoculated with different stripe rust races and powdery mildew races in seedlings, 117-6 expressed high resistance to them. The 117-6 line also exhibited high resistance to stripe rust and powdery mildew in the field under natural Puccinia striiformis f. sp. tritici (Pst) and Blumeria graminis f. sp. tritici (Bgt) infection. The cytogenetic analysis indicated that the introduction of 6RS conferred resistance ability. Compared with wheat parent CN25, 117-6 exhibited excellent agronomic traits in the field. The present study indicated that Qinling rye may carry favorite genes as a potential source for wheat genetic improvement, and 117-6 could be a useful germplasm for wheat breeding programs in the future.  相似文献   

18.
Aquaporins (AQPs) are essential membrane proteins involved in seed maturation and germination, stomata movement, photosynthesis, and regulation of plant flowering processes. Pitaya flowers are open at night and wither at daybreak, which shows an obvious circadian rhythm. In this study, a comprehensive genome-wide analysis of AQPs in Hylocereus undantus was conducted to screen key genes associated with flowering processes. A total of 33 HuAQP genes were identified from the H. undantus genome. The 33 HuAQPs were grouped into four subfamilies: 10 PIPs, 13 TIPs, 8 NIPs, and 2 SIPs, which were distributed on 9 out of 11 pitaya chromosomes (Chr) (except for Chr7 and Chr10). Results from expression profiles showed that HuNIP6;1 may be involved in pitaya’s floral opening. HuNIP6;1 was localized exclusively in the cell membrane. Overexpression of HuNIP6;1 in Arabidopsis thaliana significantly promoted early flowering through regulating negative flowering regulators of MJM30, COL9, and PRR5, suggesting that HuNIP6;1 plays key roles in regulating flowering time. The present study provides the first genome-wide analysis of the AQP gene family in pitaya and valuable information for utilization of HuAQPs.  相似文献   

19.
The overall five-year survival rate of pancreatic cancer has hardly changed in the past few decades (less than 10%) because of resistance to all known therapies, including chemotherapeutic drugs. In the past few decades, gemcitabine has been at the forefront of treatment for pancreatic ductal adenocarcinoma, but more strategies to combat drug resistance need to be explored. One promising possibility is ferroptosis, a form of a nonapoptotic cell death that depends on intracellular iron and occurs through the accumulation of lipid reactive oxygen species, which are significant in drug resistance. In this article, we reviewed gemcitabine-resistance mechanisms; assessed the relationship among ferroptosis, tumorigenesis and gemcitabine resistance, and explored a new treatment method for pancreatic cancer.  相似文献   

20.
(1) Background: We previously demonstrated that disruption of IP6K1 improves metabolism, protecting mice from high-fat diet-induced obesity, insulin resistance, and non-alcoholic fatty liver disease and steatohepatitis. Age-induced metabolic dysfunction is a major risk factor for metabolic diseases. The involvement of IP6K1 in this process is unknown. (2) Methods: Here, we compared body and fat mass, insulin sensitivity, energy expenditure and serum-, adipose tissue- and liver-metabolic parameters of chow-fed, aged, wild type (aWT) and whole body Ip6k1 knockout (aKO) mice. (3) Results: IP6K1 was upregulated in the adipose tissue and liver of aWT mice compared to young WT mice. Moreover, Ip6k1 deletion blocked age-induced increase in body- and fat-weight and insulin resistance in mice. aKO mice oxidized carbohydrates more efficiently. The knockouts displayed reduced levels of serum insulin, triglycerides, and non-esterified fatty acids. Ip6k1 deletion partly protected age-induced decline of the thermogenic uncoupling protein UCP1 in inguinal white adipose tissue. Targets inhibited by IP6K1 activity such as the insulin sensitivity- and energy expenditure-inducing protein kinases, protein kinase B (PKB/Akt) and AMP-activated protein kinase (AMPK), were activated in the adipose tissue and liver of aKO mice. (4) Conclusions: Ip6k1 deletion maintains healthy metabolism in aging and thus, targeting this kinase may delay the development of age-induced metabolic dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号