首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
Human neutrophil elastase (HNE) is an enzyme that plays a key role in the body‘s inflammatory response. It has been linked to several diseases such as chronic obstructive pulmonary disease (COPD), emphysema, and cystic fibrosis. As potential treatments for these diseases, HNE inhibitors are of great interest. Metabolites derived from plants, particularly terpenoids such as β-caryophyllene found in black pepper and other plants, and geraniol present in several essential oils, are recognized as significant sources of inhibitors for HNE. Because of their ability to inhibit HNE, terpenoids are considered promising candidates for developing novel therapies to treat inflammatory conditions such as COPD and emphysema. Furthermore, nature can serve as an excellent designer, and it may offer a safer drug candidate for inhibiting HNE production and activity in the future. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses were searched to get relevant and up-to-date literature on terpenoids as human neutrophil elastase inhibitors. This review focuses on the isolation, chemical diversity, and inhibition of human neutrophil elastase (HNE) of various terpenoids reported from natural sources up to 2022. A total of 251 compounds from various terpenoids classes have been reported. Further, it also provides a summary of HNE inhibitors and includes a thorough discussion on the structure-activity relationship.  相似文献   

2.
Peptide–cellulose conjugates designed for use as optical protease sensors have gained interest for point-of-care (POC) detection. Elevated serine protease levels are often found in patients with chronic illnesses, necessitating optimal biosensor design for POC assessment. Nanocellulose provides a platform for protease sensors as a transducer surface, and the employment of nanocellulose in this capacity combines its biocompatibility and high specific surface area properties to confer sensitive detection of dilute biomarkers. However, a basic understanding of the spatiotemporal relationships of the transducer surface and sensor disposition is needed to improve protease sensor design and development. Here, we examine a tripeptide, fluorogenic elastase biosensor attached to TEMPO-oxidized nanofibrillated cellulose via a polyethylene glycol linker. The synthetic conjugate was found to be active in the presence of human neutrophil elastase at levels comparable to other cellulose-based biosensors. Computational models examined the relationship of the sensor molecule to the transducer surface. The results illustrate differences in two crystallite transducer surfaces ((110) vs. (1−10)) and reveal preferred orientations of the sensor. Finally, a determination of the relative (110) vs. (1−10) orientations of crystals extracted from cotton demonstrates a preference for the (1−10) conformer. This model study potentiates the HNE sensor results for enhanced sensor activity design.  相似文献   

3.
A series of 3,3-diethylazetidine-2,4-dione based thiazoles 3a–3j were designed and synthesized as new human neutrophil elastase (HNE) inhibitors in nanomolar range. The representative compounds 3c, 3e, and 3h exhibit high HNE inhibitory activity with IC50 values of 35.02–44.59 nM, with mixed mechanism of action. Additionally, the most active compounds 3c and 3e demonstrate high stability under physiological conditions. The molecular docking study showed good correlation of the binding energies with the IC50 values, suggesting that the inhibition properties are largely dependent on the stage of ligand alignment in the binding cavity. The inhibition properties are correlated with the energy level of substrates of the reaction of ligand with Ser195. Moreover, most compounds showed high and broad-spectrum antiproliferative activity against human leukemia (MV4-11), human lung carcinoma (A549), human breast adenocarcinoma (MDA-MB-231), and urinary bladder carcinoma (UMUC-3), with IC50 values of 4.59–9.86 μM. Additionally, compounds 3c and 3e can induce cell cycle arrest at the G2/M phase and apoptosis via caspase-3 activation, leading to inhibition of A549 cell proliferation. These findings suggest that these new types of drugs could be used to treat cancer and other diseases in which immunoreactive HNE is produced.  相似文献   

4.
Herein, nine phthalimide-based thiazoles (4a–4i) were synthesized and investigated as new human neutrophil elastase (HNE) inhibitors using spectrofluorimetric and computational methods. The most active compounds containing 4-trifluoromethyl (4c), 4-naphthyl (4e) and 2,4,6-trichloro (4h) substituents in the phenyl ring exhibited high HNE inhibitory activity with IC50 values of 12.98–16.62 µM. Additionally, compound 4c exhibited mixed mechanism of action. Computational investigation provided a consistent picture of the ligand-receptor pattern of inter-actions, common for the whole considered group of compounds. Moreover, compounds 4b, 4c, 4d and 4f showed high antiproliferative activity against human cancer cells lines MV4-11, and A549 with IC50 values of 8.21 to 25.57 µM. Additionally, compound 4g showed high activity against MDA-MB-231 and UMUC-3 with IC50 values of 9.66 and 19.81 µM, respectively. Spectrophotometric analysis showed that the most active compound 4c demonstrated high stability under physiological conditions.  相似文献   

5.
Neutrophil elastase (NE) is a serine protease released during neutrophil maturation. High levels of NE are related to lung tissue damage and poor prognosis in cancer; thus, NE is a potential target for therapeutic immunotherapy for multiple lung diseases and cancers. Here, we isolate and characterize two high-affinity, specific, and noncompetitive anti-NE antibodies Fab 1C10 and VH 1D1.43 from two large phage-displayed human Fab and VH libraries. After fusion with human IgG1 Fc, both of them (VH-Fc 1D1.43 and IgG1 1C10) inhibit NE enzymatic activity with VH-Fc 1D1.43 showing comparable inhibitory effects to that of the small molecule NE inhibitor SPCK and IgG1 1C10 exhibiting even higher (2.6-fold) activity than SPCK. Their epitopes, as mapped by peptide arrays combined with structural modeling, indicate different mechanisms for blocking NE activity. Both VH-Fc and IgG1 antibodies block NE uptake by cancer cells and fibroblast differentiation. VH-Fc 1D1.43 and IgG1 1C10 are promising for the antibody-based immunotherapy of cancer and inflammatory diseases.  相似文献   

6.
Human neutrophil elastase (HNE) is a serine protease associated with several inflammatory processes such as chronic obstructive pulmonary disease (COPD). The precise involvement of HNE in COPD and other inflammatory disease mechanisms has yet to be clarified. Herein we report a copper‐catalyzed alkyne–azide 1,3‐dipolar cycloaddition (CuAAC, or ′click′ chemistry) approach based on the 4‐oxo‐β‐lactam warhead that yielded potent HNE inhibitors containing a triazole moiety. The resulting structure–activity relationships set the basis to develop fluorescent and biotinylated activity‐based probes as tools for molecular functional analysis. Attaching the tags to the 4‐oxo‐β‐lactam scaffold did not affect HNE inhibitory activity, as revealed by the IC50 values in the nanomolar range (56–118 nm ) displayed by the probes. The nitrobenzoxadiazole (NBD)‐based probe presented the best binding properties (ligand efficiency (LE)=0.31) combined with an excellent lipophilic ligand efficiency (LLE=4.7). Moreover, the probes showed adequate fluorescence properties, internalization in human neutrophils, and suitable detection of HNE in the presence of a large excess of cell lysate proteins. This allows the development of activity‐based probes with promising applications in target validation and identification, as well as diagnostic tools.  相似文献   

7.
Human neutrophil elastase (HNE) is a key protease for matrix degradation. High HNE activity is observed in inflammatory diseases. Accordingly, HNE is a potential target for the treatment of pulmonary diseases such as chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), bronchiectasis (BE), and pulmonary hypertension (PH). HNE inhibitors should reestablish the protease–anti‐protease balance. By means of medicinal chemistry a novel dihydropyrimidinone lead‐structure class was identified. Further chemical optimization yielded orally active compounds with favorable pharmacokinetics such as the chemical probe BAY‐678. While maintaining outstanding target selectivity, picomolar potency was achieved by locking the bioactive conformation of these inhibitors with a strategically positioned methyl sulfone substituent. An induced‐fit binding mode allowed tight interactions with the S2 and S1 pockets of HNE. BAY 85‐8501 ((4S)‐4‐[4‐cyano‐2‐(methylsulfonyl)phenyl]‐3,6‐dimethyl‐2‐oxo‐1‐[3‐(trifluoromethyl)phenyl]‐1,2,3,4‐tetrahydropyrimidine‐5‐carbonitrile) was shown to be efficacious in a rodent animal model related to ALI. BAY 85‐8501 is currently being tested in clinical studies for the treatment of pulmonary diseases.  相似文献   

8.
9.
Neutrophils are short‐lived leukocytes that migrate to sites of infection as part of the acute immune response, where they phagocytose, degranulate, and form neutrophil extracellular traps (NETs). During NET formation, the nuclear lobules of neutrophils disappear and the chromatin expands and, accessorized with neutrophilic granule proteins, is expelled. NETs can be pathogenic in, for example, sepsis, cancer, and autoimmune and cardiovascular diseases. Therefore, the identification of inhibitors of NET formation is of great interest. Screening of a focused library of natural‐product‐inspired compounds by using a previously validated phenotypic NET assay identified a group of tetrahydroisoquinolines as new NET formation inhibitors. This compound class opens up new avenues for the study of cellular death through NET formation (NETosis) at different stages, and might inspire new medicinal chemistry programs aimed at NET‐dependent diseases.  相似文献   

10.
11.
Three new 3‐amino‐6‐hydroxy‐2‐piperidone (Ahp)‐containing cyclic depsipeptides, named loggerpeptins A–C ( 1 3 ), along with molassamide ( 4 ), were discovered from a marine cyanobacterium, extending the structural diversity of this prevalent scaffold of cyanobacterial serine protease inhibitors. Molassamide, which contains a 2‐amino‐butenoic (Abu) unit in the cyclic core, was the most potent and selective analogue against human neutrophil elastase (HNE). Given the growing evidence supporting the role of HNE in breast cancer progression and metastasis, we assessed the cellular effects of compounds 3 and 4 in the context of targeting invasive breast cancer. Both compounds inhibited cleavage of the elastase substrate CD40 in biochemical assays; however, only 4 exhibited significant cellular activity. As CD40 and other receptor proteolytic processing culminates in NFκB activation, we assessed the effects of 4 on the expression of target genes, including ICAM‐1. ICAM‐1 is also a direct target of elastase and, in our studies, compound 4 attenuated both elastase‐induced ICAM‐1 gene expression and ICAM‐1 proteolytic processing by elastase, revealing a potential dual effect on migration through modulation of gene expression and proteolytic processing. Molassamide also specifically inhibited the elastase‐mediated migration of highly invasive triplenegative breast cancer cells.  相似文献   

12.
13.
14.
Fluorescent natural products are a rich source of drugs and chemical probes, but their innate fluorescence can interfere with fluorescence-based screening assays. Caspase-8 is a key player in apoptosis, its inhibition having been found to be beneficial for treatment of inflammatory and neurodegenerative diseases. Small-molecular inhibitors of caspase-8 remain sparsely reported, however. In this study, we firstly developed a light-up probe based on an AIEgen and capable of targeting caspase-8. This fluorescent dye has a Stokes shift of 200 nm, which could allow the innate fluorescence signals of natural products to be avoided. On screening a library of 86 fluorescent natural products, we found for the first time that gossypol showed potent inhibition of caspase-8 in vitro and in situ. This unique light-up probe, coupled with colored natural products, could represent an efficient approach to hit discovery for druggable targets.  相似文献   

15.
Focal adhesion kinase (FAK) is a multifunctional protein involved in cellular communication, integrating and transducing extracellular signals from cell-surface membrane receptors. It plays a central role intracellularly and extracellularly within the tumor microenvironment. Perturbations in FAK signaling promote tumor occurrence and development, and studies have revealed its biological behavior in tumor cell proliferation, migration, and adhesion. Herein we provide an overview of the complex biology of the FAK family members and their context-dependent nature. Next, with a focus on cancer, we highlight the activities of FAK signaling in different types of cancer and how knowledge of them is being used for screening natural compounds used in herbal medicine to fight tumor development.  相似文献   

16.
The π‐stacking of fluorinated benzene rings on protein backbone amide groups was investigated, using a dual approach comprising enzyme–ligand binding studies complemented by high‐level quantum chemical calculations. In the experimental study, the phenyl substituent of triazine nitrile inhibitors of human cathepsin L (hCatL), which stacks onto the peptide amide bond Gly67?Gly68 at the entrance of the S3 pocket, was systematically fluorinated, and differences in inhibitory potency were measured in a fluorimetric assay. Binding affinity is influenced by lipophilicity (clog P), the dipole and quadrupole moments of the fluorinated rings, but also by additional interactions of the introduced fluorine atoms with the local environment of the pocket. Generally, the higher the degree of fluorination, the better the binding affinities. Gas phase calculations strongly support the contributions of the molecular quadrupole moments of the fluorinated phenyl rings to the π‐stacking interaction with the peptide bond. These findings provide useful guidelines for enhancing π‐stacking on protein amide fragments.  相似文献   

17.
18.
Although cardiovascular devices are mostly implanted in arteries or to replace arteries, in vitro studies on implant endothelialization are commonly performed with human umbilical cord-derived venous endothelial cells (HUVEC). In light of considerable differences, both morphologically and functionally, between arterial and venous endothelial cells, we here compare HUVEC and human umbilical cord-derived arterial endothelial cells (HUAEC) regarding their equivalence as an endothelial cell in vitro model for cardiovascular research. No differences were found in either for the tested parameters. The metabolic activity and lactate dehydrogenase, an indicator for the membrane integrity, slightly decreased over seven days of cultivation upon normalization to the cell number. The amount of secreted nitrite and nitrate, as well as prostacyclin per cell, also decreased slightly over time. Thromboxane B2 was secreted in constant amounts per cell at all time points. The Von Willebrand factor remained mainly intracellularly up to seven days of cultivation. In contrast, collagen and laminin were secreted into the extracellular space with increasing cell density. Based on these results one might argue that both cell types are equally suited for cardiovascular research. However, future studies should investigate further cell functionalities, and whether arterial endothelial cells from implantation-relevant areas, such as coronary arteries in the heart, are superior to umbilical cord-derived endothelial cells.  相似文献   

19.
Co-infection with the human pegivirus 1 (HPgV-1) often has a beneficial effect on disease progression in HIV-1-infected individuals. Several HPgV-1 proteins and peptides, including a 20-mer peptide (P6-2) derived from the N-terminal region of the HPgV-1 surface protein E2, have been associated with this phenomenon, which is referred to as viral interference. We identified the cysteine residues, the hydrophobic core tetrapeptide, as well as the C-terminal negative charge as key factors for the HIV-1 inhibitory activity of P6-2. Analysis of mutations in P6-2-resistant HIV-1 indicated a binding site for the peptide in the HIV-1 envelope glycoprotein gp120. In fact, P6-2 was shown to bind to soluble gp120, as well as to a peptide presenting the gp120 V3 loop. Furthermore, the HIV-1 inhibitory activity of P6-2 could be revoked by the V3 loop peptide, thus indicating a molecular mechanism that involves interaction of P6-2 with the gp120 V3 loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号