首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lung cancer (LC) is the leading cause of cancer death in the United States. Erythropoietin-producing hepatocellular receptors (EPHs) comprise the largest receptor tyrosine kinases (RTKs) family in mammals. EPHs along with their ligands, EPH-family receptor-interacting proteins (ephrins), have been found to be either up- or downregulated in LC cells, hence exhibiting a defining role in LC carcinogenesis and tumor progression. In their capacity as membrane-bound molecules, EPHs/ephrins may represent feasible targets in the context of precision cancer treatment. In order to investigate available therapeutics targeting the EPH/ephrin system in LC, a literature review was conducted, using the MEDLINE, LIVIVO, and Google Scholar databases. EPHA2 is the most well-studied EPH/ephrin target in LC treatment. The targeting of EPHA2, EPHA3, EPHA5, EPHA7, EPHB4, EPHB6, ephrin-A1, ephrin-A2, ephrin-B2, and ephrin-B3 in LC cells or xenograft models not only directly correlates with a profound LC suppression but also enriches the effects of well-established therapeutic regimens. However, the sole clinical trial incorporating a NSCLC patient could not describe objective anti-cancer effects after anti-EPHA2 antibody administration. Collectively, EPHs/ephrins seem to represent promising treatment targets in LC. However, large clinical trials still need to be performed, with a view to examining the effects of EPH/ephrin targeting in the clinical setting.  相似文献   

2.
Erythropoietin-producing human hepatocellular receptors (EPHs) compose the largest known subfamily of receptor tyrosine kinases (RTKs). They bind and interact with the EPH family receptor interacting proteins (ephrins). EPHs/ephrins are implicated in a variety of physiological processes, as well as in cancer pathogenesis. With neoplastic disease remaining a leading cause of death world-wide, the development of novel biomarkers aiding in the field of diagnosis, prognosis, and disease monitoring is of utmost importance. A multitude of studies have proven the association between the expression of members of the EPH/ephrin system and various clinicopathological parameters, including disease stage, tumor histologic grade, and patients’ overall survival. Besides their utilization in timely disease detection and assessment of outcome, EPHs/ephrins could also represent possible novel therapeutic targets. The aim of the current review of the literature was to present the existing data regarding the association between EPH/ephrin system expression and the clinical characteristics of malignant tumors.  相似文献   

3.
Musculoskeletal sarcomas represent rare heterogenous malignancies of mesenchymal origin that can be divided in two distinct subtypes, bone and soft tissue sarcomas. Current treatment options combine the surgical excision of local tumors and multidrug chemotherapy to prevent metastatic widespread disease. Due to the grim prognosis that usually accompanies such tumors, researchers have attempted to shed light on the molecular pathways implicated in their pathogenesis in order to develop novel, innovative, personalized therapeutic strategies. Erythropoietin-producing human hepatocellular receptors (EPHs) are tyrosine-kinase transmembrane receptors that, along with their ligands, ephrins, participate in both tumor-suppressive or tumor-promoting signaling pathways in bone and soft tissue sarcomas. The EPH/ephrin axis orchestrates cancerous processes such as cell–cell and cell–substrate adhesion and enhances the remodeling of the intracellular cytoskeleton to stimulate the motility and invasiveness of sarcoma cells. The purpose of our study was to review published PubMed literature to extract results from in vitro, in vivo and clinical trials indicative of the role of EPH/ephrin signaling in bone and soft tissue sarcomas. Based on these reports, significant interactions between the EPH/ephrin signaling pathway and a plethora of normal and abnormal cascades contribute to molecular mechanisms enhancing malignancy during sarcoma progression. In addition, EPHs and ephrins are prospective candidates for diagnostic, monitoring and therapeutic purposes in the clinical setting against bone and soft tissue sarcomas.  相似文献   

4.
The EPH/ephrin system constitutes a bidirectional signaling pathway comprised of a family of tyrosine kinase receptors in tandem with their plasma membrane-bound ligand (ephrins). Its significance in a wide variety of physiologic and pathologic processes has been recognized during the past decades. In carcinogenesis, EPH/ephrins coordinate a wide spectrum of pathologic processes, such as angiogenesis, vessel infiltration, and metastasis. Despite the recent advances in colorectal cancer (CRC) diagnosis and treatment, it remains a leading cause of death globally, accounting for 9.2% of all cancer deaths. A growing body of literature has been published lately revitalizing our scientific interest towards the role of EPH/ephrins in pathogenesis and the treatment of CRC. The aim of the present review is to present the recent CRC data which might lead to clinical practice changes in the future.  相似文献   

5.
Exosomes are cell-secreted nanoparticles containing various molecules including small vesicles, microRNAs (miRNAs), messenger RNAs or bioactive proteins which are thought to be of paramount importance for intercellular communication. The unique effects of exosomes in terms of cell penetration capacity, decreased immunogenicity and inherent stability, along with their key role in mediating information exchange among tumor cells and their surrounding tumor microenvironment (TME), render them a promising platform for drug targeted delivery. Compared to synthetic drugs, exosomes boast a plethora of advantages, including higher biocompatibility, lower toxicity and increased ability of tissue infiltration. Nevertheless, the use of artificial exosomes can be limited in practice, partly due to their poor targeting ability and partly due to their limited efficacy. Therefore, efforts have been made to engineer stem cell-derived exosomes in order to increase selectiveness and effectivity, which can then become loaded with various active substances depending on the therapeutic approach followed. Erythropoietin-producing human hepatocellular receptors (EPHs), along with their ligands, the EPH family receptor interacting proteins (ephrins), have been extensively investigated for their key roles in both physiology and cancer pathogenesis. EPHs/ephrins exhibit both tumorigenic and tumor suppressing properties, with their targeting representing a promising, novel therapeutic approach in cancer patients’ management. In our review, the use of ephrin-loaded exosomes as a potential therapeutic targeted delivery system in cancer will be discussed.  相似文献   

6.
The female reproductive tract hosts a specific microbiome, which plays a crucial role in sustaining equilibrium and good health. In the majority of reproductive women, the microbiota (all bacteria, viruses, fungi, and other single-celled organisms within the human body) of the vaginal and cervical microenvironment are dominated by Lactobacillus species, which benefit the host through symbiotic relationships, in comparison to the uterus, fallopian tubes, and ovaries, which may contain a low-biomass microbiome with a diverse mixture of microorganisms. Although disruption to the balance of the microbiota develops, the altered immune and metabolic signaling may cause an impact on diseases such as cancer. These pathophysiological modifications in the gut–uterus axis may spark gynecological cancers. New information displays that gynecological and gastrointestinal tract dysbiosis (disruption of the microbiota homeostasis) can play an active role in the advancement and metastasis of gynecological neoplasms, such as cervical, endometrial, and ovarian cancers. Understanding the relationship between microbiota and endometrial cancer is critical for prognosis, diagnosis, prevention, and the development of innovative treatments. Identifying a specific microbiome may become an effective method for characterization of the specific microbiota involved in endometrial carcinogenesis. The aim of this study was to summarize the current state of knowledge that describes the correlation of microbiota with endometrial cancer with regard to the formation of immunological pathologies.  相似文献   

7.
Erythropoietin‐producing hepatocellular (EPH) receptors are transmembrane receptor tyrosine kinases. Their extracellular domains bind specifically to ephrin A/B ligands, and this binding modulates intracellular kinase activity. EPHs are key players in bidirectional intercellular signaling, controlling cell morphology, adhesion, and migration. They are increasingly recognized as cancer drug targets. We analyzed the binding of NVP‐BHG712 (NVP) to EPHA2 and EPHB4. Unexpectedly, all tested commercially available NVP samples turned out to be a regioisomer (NVPiso) of the inhibitor, initially described in a Novartis patent application. They only differ by the localization of a single methyl group on either one of two adjacent nitrogen atoms. The two compounds of identical mass revealed different binding modes. Furthermore, both in vitro and in vivo experiments showed that the isomers differ in their kinase affinity and selectivity.  相似文献   

8.
Cell–cell communication proteins Eph and ephrin constitute the largest family of receptor tyrosine kinases (RTKs). They are distinguished by the fact that both receptors and ligands are membrane-bound, and both can drive intracellular signaling in their respective cells. Ever since these RTKs have been found to be involved in cancer development, strategies to target them therapeutically have been actively pursued. However, before this goal can be rationally achieved, the contributions of either Eph receptors or their ephrin ligands to cancer development and progression should be scrutinized in depth. To assess the clinical pertinence of this concern, we performed a systematic review and meta-analysis of the prognostic/predictive value of EphB2 and its multiple cognate ephrin ligands in breast cancer. We found that EphB2 has prognostic value, as indicated by the association of higher EphB2 expression levels with lower distant metastasis-free survival (DMFS), and the association of lower EphB2 expression levels with poorer relapse-free survival (RFS). We also found that higher EphB2 expression could be a prognostic factor for distant metastasis, specifically in the luminal subtypes of breast cancer. EFNB2 showed a marked correlation between higher expression levels and shorter DMFS. EFNA5 or EFNB1 overexpression is correlated with longer RFS. Increased EFNB1 expression is correlated with longer OS in lymph node (LN)-negative patients and the luminal B subtype. Higher levels of EFNB2 or EFNA5 are significantly correlated with shorter RFS, regardless of LN status. However, while this correlation with shorter RFS is true for EFNB2 in all subtypes except basal, it is also true for EFNA5 in all subtypes except HER2+. The analysis also points to possible predictive value for EphB2. In systemically treated patients who have undergone either endocrine therapy or chemotherapy, we found that higher expression of EphB2 is correlated with better rates of RFS. Bearing in mind the limitations inherent to any mRNA-based profiling method, we complemented our analysis with an immunohistochemical assessment of expression levels of both the EphB2 receptor and cognate ephrin ligands. We found that the latter are significantly more expressed in cancers than in normal tissues, and even more so in invasive and metastatic samples than in ductal carcinoma in situ (DCIS). Finally, in an in vitro cellular model of breast cancer progression, based on H-Ras-transformation of the MCF10A benign mammary cell line, we observed dramatic increases in the mRNA expression of EphB2 receptor and EFNB1 and EFNB2 ligands in transformed and invasive cells in comparison with their benign counterparts. Taken together, these data show the clinical validity of a model whereby EphB2, along with its cognate ephrin ligands, have dual anti- and pro-tumor progression effects. In so doing, they reinforce the necessity of further biological investigations into Ephs and ephrins, prior to using them in targeted therapies.  相似文献   

9.
Chromosome 3-specific NotI microarray (NMA) containing 180 clones with 188 genes was used in the study to analyze 18 high grade serous ovarian cancer (HGSOC) samples and 7 benign ovarian tumors. We aimed to find novel methylation-dependent biomarkers for early detection and prognosis of HGSOC. Thirty five NotI markers showed frequency of methylation/deletion more or equal to 17%. To check the results of NMA hybridizations several samples for four genes (LRRC3B, THRB, ITGA9 and RBSP3 (CTDSPL)) were bisulfite sequenced and confirmed the results of NMA hybridization. A set of eight biomarkers: NKIRAS1/RPL15, THRB, RBPS3 (CTDSPL), IQSEC1, NBEAL2, ZIC4, LOC285205 and FOXP1, was identified as the most prominent set capable to detect both early and late stages of ovarian cancer. Sensitivity of this set is equal to (72 ± 11)% and specificity (94 ± 5)%. Early stages represented the most complicated cases for detection. To distinguish between Stages I + II and Stages III + IV of ovarian cancer the most perspective set of biomarkers would include LOC285205, CGGBP1, EPHB1 and NKIRAS1/RPL15. The sensitivity of the set is equal to (80 ± 13)% and the specificity is (88 ± 12)%. Using this technique we plan to validate this panel with new epithelial ovarian cancer samples and add markers from other chromosomes.  相似文献   

10.
11.
The germline carrier of the BRCA1 pathogenic mutation has been well proven to confer an increased risk of breast and ovarian cancer. Despite BRCA1 biallelic pathogenic mutations being extremely rare, they have been reported to be embryonically lethal or to cause Fanconi anemia (FA). Here we describe a patient who was a 48-year-old female identified with biallelic pathogenic mutations of the BRCA1 gene, with no or very subtle FA-features. She was diagnosed with ovarian cancer and breast cancer at the ages of 43 and 44 and had a strong family history of breast and gynecological cancers.  相似文献   

12.
13.
Approximately 25,000 ovarian cancers are diagnosed in the U.S. annually, and 75% are in the advanced stage and largely incurable. There is critical need for early detection tools and novel treatments. Proteasomal ubiquitin receptor ADRM1 is a protein that is encoded by the ADRM1 gene. Recently, we showed that among 20q13-amplified genes in ovarian cancer, ADRM1 overexpression was the most highly correlated with amplification and was significantly upregulated with respect to stage, recurrence, and metastasis. Its overexpression correlated significantly with shorter time to recurrence and overall survival. Array-CGH and microarray expression of ovarian cancer cell lines provided evidence consistent with primary tumor data that ADRM1 is a 20q13 amplification target. Herein, we confirm the ADRM1 amplicon in a second ovarian cancer cohort and define a minimally amplified region of 262 KB encompassing seven genes. Additionally, using RNAi knock-down of ADRM1 in naturally amplified cell line OAW42 and overexpression of ADRM1 via transfection in ES2, we show that (1) ADRM1 overexpression increases proliferation, migration, and growth in soft agar, and (2) knock-down of ADRM1 results in apoptosis. Proteomic analysis of cells with ADRM1 knock-down reveals dysregulation of proteins including CDK-activating kinase assembly factor MAT1. Taken together, the results indicate that amplified ADRM1 is involved in cell proliferation, migration and survival in ovarian cancer cells, supporting a role as an oncogene and novel therapeutic target for ovarian cancer.  相似文献   

14.
Ovarian cancer is a fatal gynecological cancer because of a lack of early diagnosis, which often relapses as chemoresistant. Trichodermin, a trichothecene first isolated from Trichoderma viride, is an inhibitor of eukaryotic protein synthesis. However, whether trichodermin is able to suppress ovarian cancer or not was unclear. In this study, trichodermin (0.5 µM or greater) significantly decreased the proliferation of two ovarian cancer cell lines A2780/CP70 and OVCAR-3. Normal ovarian IOSE 346 cells were much less susceptible to trichodermin than the cancer cell lines. Trichodermin predominantly inhibited ovarian cancer cells by inducing G0/G1 cell cycle arrest rather than apoptosis. Trichodermin decreased the expression of cyclin D1, CDK4, CDK2, retinoblastoma protein, Cdc25A, and c-Myc but showed little effect on the expression of p21Waf1/Cip1, p27Kip1, or p16Ink4a. c-Myc was a key target of trichodermin. Trichodermin regulated the expression of Cdc25A and its downstream proteins via c-Myc. Overexpression of c-Myc attenuated trichodermin’s anti-ovarian cancer activity. In addition, trichodermin decelerated tumor growth in BALB/c nude mice, proving its effectiveness in vivo. These findings suggested that trichodermin has the potential to contribute to the treatment of ovarian cancer.  相似文献   

15.
16.
Ovarian cancer is the fifth most common female cancer in the Western world, and the deadliest gynecological malignancy. The overall poor prognosis for ovarian cancer patients is a consequence of aggressive biological behavior and a lack of adequate diagnostic tools for early detection. In fact, approximately 70% of all patients with epithelial ovarian cancer are diagnosed at advanced tumor stages. These facts highlight a significant clinical need for reliable and accurate detection methods for ovarian cancer, especially for patients at high risk. Because CA125 has not achieved satisfactory sensitivity and specificity in detecting ovarian cancer, numerous efforts, including those based on single and combined molecule detection and “omics” approaches, have been made to identify new biomarkers. Intriguingly, more than 10% of all ovarian cancer cases are of familial origin. BRCA1 and BRCA2 germline mutations are the most common genetic defects underlying hereditary ovarian cancer, which is why ovarian cancer risk assessment in developed countries, aside from pedigree analysis, relies on genetic testing of BRCA1 and BRCA2. Because not only BRCA1 and BRCA2 but also other susceptibility genes are tightly linked with ovarian cancer-specific DNA repair defects, another possible approach for defining susceptibility might be patient cell-based functional testing, a concept for which support came from a recent case-control study. This principle would be applicable to risk assessment and the prediction of responsiveness to conventional regimens involving platinum-based drugs and targeted therapies involving poly (ADP-ribose) polymerase (PARP) inhibitors.  相似文献   

17.
Beclin 1 is an autophagy-associated protein involved in apoptosis and drug resistance, as well as various malignancies. We investigated the expression of Beclin 1 protein in ovarian epithelial tissues and correlated it with the prognosis of ovarian cancer. Beclin 1 protein expression was determined using immunohistochemistry in 148 patients with ovarian epithelial cancer, 26 with ovarian borderline tumor, 25 with benign ovarian tumor, and 30 with normal ovarian tissue. The relationships between Beclin 1 protein expression and ovarian cancer pathological characteristics were analyzed. The risk factors for ovarian cancer prognosis were analyzed using Cox’s regression model. A survival curve was plotted from the follow-up data of 93 patients with ovarian cancer to analyze the effects of Beclin 1 expression on the prognosis of ovarian cancer. The positive rates of Beclin 1 were significantly higher in ovarian epithelial cancer (148) and borderline tumor (26) than in benign ovarian tumor (25) or normal ovarian tissue (30) (all p < 0.001). The surgical stage and Beclin 1 expression were both independent risk factors for ovarian cancer prognosis (both p < 0.05). Patients with high Beclin 1 levels showed better survival than those with low Beclin 1 levels (p = 0.009). Beclin 1 protein is upregulated in ovarian epithelial cancer and is a prognostic factor of ovarian cancer.  相似文献   

18.
TET3 is a member of the TET (ten-eleven translocation) proteins family that catalyzes the conversion of the 5-methylcytosine into 5-hydroxymethylcytosine. TET proteins can also affect chromatin modifications and gene expression independently of their enzymatic activity via interactions with other proteins. O-GlcNAc transferase (OGT), the enzyme responsible for modification of proteins via binding of N-acetylglucosamine residues, is one of the proteins whose action may be dependent on TET3. Here, we demonstrated that in endometrial cancer cells both TET3 and OGT affected the expression of genes involved in epithelial to mesenchymal transition (EMT), i.e., FOXC1, TWIST1, and ZEB1. OGT overexpression was caused by an increase in TWIST1 and ZEB1 levels in HEC-1A and Ishikawa cells, which was associated with increased O-GlcNAcylation of histone H2B and trimethylation of H3K4. The TET3 had the opposite effect on gene expressions and histone modifications. OGT and TET3 differently affected FOXC1 expression and the migratory potential of HEC-1A and Ishikawa cells. Analysis of gene expressions in cancer tissue samples from endometrial cancer patients confirmed the association between OGT or TET3 and EMT genes. Our results contribute to the knowledge of the role of the TET3/OGT relationship in the complex mechanism supporting endometrial cancer progression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号