首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to several mutations, the oncogene Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is activated in the majority of cancers, and targeting it has been pharmacologically challenging. In this study, using an in silico approach comprised of pharmacophore modeling, molecular docking, and molecular dynamics simulations, potential KRAS G12D inhibitors were investigated. A ligand-based common feature pharmacophore model was generated to identify the framework necessary for effective KRAS inhibition. The chemical features in the selected pharmacophore model comprised two hydrogen bond donors, one hydrogen bond acceptor, two aromatic rings and one hydrophobic feature. This model was used for screening in excess of 214,000 compounds from InterBioScreen (IBS) and ZINC databases. Eighteen compounds from the IBS and ten from the ZINC database mapped onto the pharmacophore model and were subjected to molecular docking. Molecular docking results highlighted a higher affinity of four hit compounds towards KRAS G12D in comparison to the reference inhibitor, BI-2852. Sequential molecular dynamics (MD) simulation studies revealed all four hit compounds them possess higher KRAS G12D binding free energy and demonstrate stable polar interaction with key residues. Further, Principal Component Analysis (PCA) analysis of the hit compounds in complex with KRAS G12D also indicated stability. Overall, the research undertaken provides strong support for further in vitro testing of these newly identified KRAS G12D inhibitors, particularly Hit1 and Hit2.  相似文献   

2.
3.
A convenient synthesis of a broad series of thirteen examples of alkyne-spacer derivatives 2 from the well-known Sonogashira cross-coupling reaction on diazenyl-pyrazolo[1,5-a]pyrimidin-2-amine compounds 1 is reported. The reactivity of heterocycles 1 due the presence of selected electron-donor (EDG) and electron-withdrawing (EWG) groups attached to different alkynes was evaluated. Also, the reactional versatility due the position variation of the bromo atom at the scaffolds 1 was also investigated. In general, derivatives presented strong absorption bands at the 250–500 nm optical window and UV to cyan emission properties. Also, the redox analysis was recorded by electrochemical cyclic voltammetry technique. For HSA biomacromolecule assays, spectroscopic studies by UV-Vis, steady-state and time-resolved emission fluorescence, and molecular docking calculations evidenced the ability of each compound to establish interactions with human serum albumin (HSA). Finally, the behavior presented for this new class of heterocycles makes them a promising tool as optical sensors for albumins.  相似文献   

4.
Molecular hybridization is deemed an optimistic approach in drug design and the discovery of novel biologically active molecules as it may advance their affinity and potency while concurrently decreasing associated resistance and side effects. Approximately 20 % of approved drugs were developed using this approach in the past few years. Thiazolidinone is one of the privileged pharmacophores in medicinal chemistry and is associated with various biological activities; it forms a functional unit in several FDA-approved drugs. Consequently, this pharmacophore has attracted the attention of many research groups to further explore its pharmacological relevance by coupling it with other pharmacophoric moieties. This review presents a concise account of scholarly research exploits directed at the biological activities of newly synthesized thiazolidinone-tagged molecular hybrids. Focused attention is given to the existing structural activity relationship in each compound library and the toxicity profile of potent compounds including in silico docking studies (where applicable). This work would provide a base on which new pharmaceuticals with improved potency can be modelled.  相似文献   

5.
Heparanase (Hpse) is an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains. Its upregulated expression is implicated in tumor growth, metastasis and angiogenesis, thus making it an attractive target in cancer therapeutics. Currently, a few small molecule inhibitors have been reported to inhibit Hpse, with promising oral administration and pharmacokinetic (PK) properties. In the present study, a ligand-based pharmacophore model was generated from a dataset of well-known active small molecule Hpse inhibitors which were observed to display favorable PK properties. The compounds from the InterBioScreen database of natural (69,034) and synthetic (195,469) molecules were first filtered for their drug-likeness and the pharmacophore model was used to screen the drug-like database. The compounds acquired from screening were subjected to molecular docking with Heparanase, where two molecules used in pharmacophore generation were used as reference. From the docking analysis, 33 compounds displayed higher docking scores than the reference and favorable interactions with the catalytic residues. Complex interactions were further evaluated by molecular dynamics simulations to assess their stability over a period of 50 ns. Furthermore, the binding free energies of the 33 compounds revealed 2 natural and 2 synthetic compounds, with better binding affinities than reference molecules, and were, therefore, deemed as hits. The hit compounds presented from this in silico investigation could act as potent Heparanase inhibitors and further serve as lead scaffolds to develop compounds targeting Heparanase upregulation in cancer.  相似文献   

6.
Steroids are important pharmaceutically active compounds. In contrast to the liver drug-metabolising cytochrome P450s, which metabolise a variety of substrates, steroid hydroxylases generally display a rather narrow substrate specificity. It is therefore a challenging goal to change their regio- and stereoselectivity. CYP106A2 is one of only a few bacterial steroid hydroxylases and hydroxylates 3-oxo-Delta4-steroids mainly in 15beta-position. In order to gain insights into the structure and function of this enzyme, whose crystal structure is unknown, a homology model has been created. The substrate progesterone was then docked into the active site to predict which residues might affect substrate binding. The model was substantiated by using a combination of theoretical and experimental investigations. First, numerous computational structure evaluation tools assessed the plausibility of its protein geometry and its quality. Second, the model explains many key properties of common cytochrome P450s. Third, two sets of mutants have been heterologously expressed, and the influence of the mutations on the catalytic activity towards deoxycorticosterone and progesterone has been studied experimentally: the first set comprises six mutations located in the structurally variable regions of this enzyme that are very difficult to predict by cytochrome P450 modelling (K27R, I86T, E90V, I71T, D185G and I215T). For these positions, no participation in the active-site formation was predicted, or could be experimentally demonstrated. The second set comprises five mutants in substrate recognition site 6 (S394I, A395L, T396R, G397P and Q398S). For these residues, participation in active-site formation and an influence on substrate binding was predicted by docking. These mutants are based on an alignment with human CYP11B1, and in fact most of these mutants altered the active-site structure and the hydroxylation activity of CYP106A2 dramatically.  相似文献   

7.
The G1 phase of cell cycle progression is regulated by Cyclin-Dependent Kinase 4 (CDK4) as well as Cyclin-Dependent Kinase 6 (CDK6), and the acivities of these enzymes are regulated by the catalytic subunit, cyclin D. Cell cycle control through selective pharmacological inhibition of CDK4/6 has proven to be beneficial in the treatment of estrogen receptor-positive (ER-positive) breast cancer, particularly improving the progression-free survival of patients. Thus, targeting specific inhibition on CDK4/6 is bound to increase therapeutic efficiency. This study aimed to obtain CDK4/6 inhibitors through a pharmacophore-based virtual screening of the ZINC15 purchasable compound database using the in silico method. The pharmacophore model was designed based on the FDA-approved cdk4/6 inhibitor structures, and molecular docking was performed to further screen the hit compounds obtained. A total of eight compounds were selected based on docking results and interactions with CDK4 and CDK6, using palbociclib as the reference drug. According to the results, the compounds of ZINC585292724 and ZINC585291674 were the best compounds based on free binding energy, as well as hydrogen bond stability, and, therefore, exhibit potential as starting points in the development of CDK4/6 inhibitors.  相似文献   

8.
The human immunodeficiency virus type 1 (HIV-1) has continued to be a global concern. With the new HIV incidence, the emergence of multi-drug resistance and the untoward side effects of currently used anti-HIV drugs, there is an urgent need to discover more efficient anti-HIV drugs. Modern computational tools have played vital roles in facilitating the drug discovery process. This research focuses on a pharmacophore-based similarity search to screen 111,566,735 unique compounds in the PubChem database to discover novel HIV-1 protease inhibitors (PIs). We used an in silico approach involving a 3D-similarity search, physicochemical and ADMET evaluations, HIV protease-inhibitor prediction (IC50/percent inhibition), rigid receptor–molecular docking studies, binding free energy calculations and molecular dynamics (MD) simulations. The 10 FDA-approved HIV PIs (saquinavir, lopinavir, ritonavir, amprenavir, fosamprenavir, atazanavir, nelfinavir, darunavir, tipranavir and indinavir) were used as reference. The in silico analysis revealed that fourteen out of the twenty-eight selected optimized hit molecules were within the acceptable range of all the parameters investigated. The hit molecules demonstrated significant binding affinity to the HIV protease (PR) when compared to the reference drugs. The important amino acid residues involved in hydrogen bonding and п-п stacked interactions include ASP25, GLY27, ASP29, ASP30 and ILE50. These interactions help to stabilize the optimized hit molecules in the active binding site of the HIV-1 PR (PDB ID: 2Q5K). HPS/002 and HPS/004 have been found to be most promising in terms of IC50/percent inhibition (90.15%) of HIV-1 PR, in addition to their drug metabolism and safety profile. These hit candidates should be investigated further as possible HIV-1 PIs with improved efficacy and low toxicity through in vitro experiments and clinical trial investigations.  相似文献   

9.
Virtual screening against NF‐κB p50 using docking simulations was applied by starting from a three‐dimensional (3D) database containing more than 4.6 million commercially available structures. This database was filtered by specifying a subset of commercially available compounds sharing a (2E,Z)‐3‐(2‐hydroxyphenyl)‐2‐propenoate substructure and relevant druglike properties. Docking to p50 NF‐κB was performed with a test set of six known inhibitors of NF‐κB–DNA interactions. In agreement with docking results, the highest‐scored compound displayed a high level of inhibitory activity in electrophoretic mobility shift assay (EMSA) experiments (inhibition of NF‐κB–DNA interactions) and on biological functions dependent on NF‐κB activity (inhibition of IL‐8 gene expression in cystic fibrosis IB3‐1 cells). We found that this in silico screening approach is suitable for the identification of low‐molecular‐weight compounds that inhibit NF‐κB–DNA interactions and NF‐κB‐dependent functions. Information deduced from the discovery of the new lead compound and its binding mode could result in further lead optimization resulting in more potent NF‐κB inhibitors.  相似文献   

10.
Cationic antimicrobial peptides have attracted interest, both as antimicrobial agents and for their ability to increase cell permeability to potentiate other antibiotics. However, toxicity to mammalian cells and complexity have hindered development for clinical use. We present the design and synthesis of very short cationic peptides (3–9 residues) with potential dual bacterial membrane permeation and efflux pump inhibition functionality. Peptides were designed based upon in silico similarity to known active peptides and efflux pump inhibitors. A number of these peptides potentiate the activity of the antibiotic novobiocin against susceptible Escherichia coli and restore antibiotic activity against a multi-drug resistant E. coli strain, despite having minimal or no intrinsic antimicrobial activity. Molecular modelling studies, via docking studies and short molecular dynamics simulations, indicate two potential mechanisms of potentiating activity; increasing antibiotic cell permeation via complexation with novobiocin to enable self-promoted uptake, and binding the E. coli RND efflux pump. These peptides demonstrate potential for restoring the activity of hydrophobic drugs.  相似文献   

11.
In this study, we have introduced newly synthesized substituted benzothiazole based berberine derivatives that have been analyzed for their in vitro and in silico biological properties. The activity towards various kinds of influenza virus strains by employing the cytopathic effect (CPE) and sulforhodamine B (SRB) assay. Several berberine–benzothiazole derivatives (BBDs), such as BBD1, BBD3, BBD4, BBD5, BBD7, and BBD11, demonstrated interesting anti-influenza virus activity on influenza A viruses (A/PR/8/34, A/Vic/3/75) and influenza B viral (B/Lee/40, and B/Maryland/1/59) strain, respectively. Furthermore, by testing neuraminidase activity (NA) with the neuraminidase assay kit, it was identified that BBD7 has potent neuraminidase activity. The molecular docking analysis further suggests that the BBD1–BBD14 compounds’ antiviral activity may be because of interaction with residues of NA, and the same as in oseltamivir.  相似文献   

12.
The COX-1 isoenzyme plays a significant role in a variety of diseases, as it catalyzes the bioprocesses behind many health problems. Among the diarylheterocycle class of COX inhibitors, the isoxazole ring has been widely used as a central heterocycle for the preparation of potent and selective COX-1 inhibitors such as P6 [3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole]. The role of the isoxazole nucleus in COX-1 inhibitor selectivity has been clarified by preparing a set of new diarylheterocycles with various heterocycle cores. Replacement of isoxazole with isothiazole or pyrazole gave a drastic decrease in COX-1 inhibitory activity, whereas the introduction of an electron-donating group (EDG) on the N-aryl pyrazole allowed recovery of COX-1 inhibitory activity and selectivity. The EDG-equipped 5-(furan-2-yl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (17) selectively inhibits COX-1 activity (IC(50) =3.4 μM; 28% COX-2 inhibition at 50 μM), in contrast to its inactive analogue, 3-(furan-2-yl)-1-phenyl-5-(trifluoromethyl)-1H-pyrazole, which does not bear the methoxy EDG. Molecular docking studies of compound 17 into the binding site of COX-1 shed light on its binding mode.  相似文献   

13.
Quantum chemical calculations at the B3LYP/6-31G* level of theory were employed for the structure-activity relationship and prediction of the antioxidant activity of edaravone and structurally related derivatives using energy (E), ionization potential (IP), bond dissociation energy (BDE), and stabilization energies (ΔE(iso)). Spin density calculations were also performed for the proposed antioxidant activity mechanism. The electron abstraction is related to electron-donating groups (EDG) at position 3, decreasing the IP when compared to substitution at position 4. The hydrogen abstraction is related to electron-withdrawing groups (EDG) at position 4, decreasing the BDE(CH) when compared to other substitutions, resulting in a better antioxidant activity. The unpaired electron formed by the hydrogen abstraction from the C-H group of the pyrazole ring is localized at 2, 4, and 6 positions. The highest scavenging activity prediction is related to the lowest contribution at the carbon atom. The likely mechanism is related to hydrogen transfer. It was found that antioxidant activity depends on the presence of EDG at the C(2) and C(4) positions and there is a correlation between IP and BDE. Our results identified three different classes of new derivatives more potent than edaravone.  相似文献   

14.
The ionotropic glutamate NMDA/NR2B receptor and its interaction with ifenprodil-like noncompetitive ligands were investigated by a combined ligand-based and target-based approach. First, we generated 3D pharmacophore hypotheses and identified common chemical features that are shared by a training set of well-known NR2B antagonists. The binding mode of the most representative ligand was also studied by molecular docking. Because the docking results and the suggested 3D pharmacophore model were in good agreement, we obtained new information about the NR2B ifenprodil site. The best pharmacophoric hypothesis was used as a query for in silico screening; this allowed the identification of new "hit". We synthesized "hit-compound" analogues, and some of the molecules showed significant activity both in binding and functional assay as well as in vivo anticonvulsant efficacy in DBA/2 mice. The most active derivatives also exhibited neuroprotective effects against glutamate-induced toxicity in HCN-1A cells.  相似文献   

15.
Core fucosylation of N-glycans is catalyzed by fucosyltransferase 8 and is associated with various types of cancer. Most reported fucosyltransferase inhibitors contain non-drug-like features, such as charged groups. New starting points for the development of inhibitors of fucosyltransferase 8 using a fragment-based strategy are presented. Firstly, we discuss the potential of a new putative binding site of fucosyltransferase 8 that, according to a molecular dynamics (MD) simulation, is made accessible by a significant motion of the SH3 domain. This might enable the design of completely new inhibitor types for fucosyltransferase 8. Secondly, we have performed a docking study targeting the donor binding site of fucosyltransferase 8, and this yielded two fragments that were linked and trimmed in silico. The resulting ligand was synthesized. Saturation transfer difference (STD) NMR confirmed binding of the ligand featuring a pyrazole core that mimics the guanine moiety. This ligand represents the first low-molecular-weight compound for the development of inhibitors of fucosyltransferase 8 with drug-like properties.  相似文献   

16.
Zinc‐dependent alcohol dehydrogenases (ADHs) are a class of enzymes applied in different biocatalytic processes ranging from lab to industrial scale. However, one drawback is the limited substrate range, necessitating a whole array of different ADHs for the relevant substrate classes. In this study, we investigated structural determinants of the substrate spectrum in the zinc‐dependent ADH carbonyl reductase 2 from Candida parapsilosis (CPCR2), combining methods of mutational analysis with in silico substrate docking. Assigned active site residues were genetically randomized, and the resulting mutant libraries were screened with a selection of challenging carbonyl substrates. Three variants (C57A, W116K, and L119M) with improved activities toward different substrates were detected at neighboring positions in the active site. Thus, all possible combinations of the mutations were generated and characterized for their substrate specificity, yielding several improved variants. The most interesting were a C57A variant, with a 27‐fold increase in specific activity for 4′‐acetamidoacetophenone, and the double mutant CPCR2 B16‐(C57A, L119M), with a 45‐fold improvement in the kcat?KM?1 value. The obtained variants were further investigated by in silico docking experiments. The results indicate that the mentioned residues are structural determinants of the substrate specificity of CPCR2, being major players in the definition of the active site. Comparison of these results with closely related enzymes suggests that these might even be transferred to other ADHs.  相似文献   

17.
Missense mutations of leucine-rich repeat kinase 2 (LRRK2), including the G2019S mutant, are responsible for the pathogenesis of Parkinson’s disease. In this work, structure-based virtual screening of a large chemical library was carried out to identify a number of novel inhibitors of the G2019S mutant of LRRK2, the biochemical potencies of which ranged from the low micromolar to the submicromolar level. The discovery of these potent inhibitors was made possible due to the modification of the original protein–ligand binding energy function in order to include an accurate ligand dehydration energy term. The results of extensive molecular docking simulations indicated that the newly identified inhibitors were bound to the ATP-binding site of the G2019S mutant of LRRK2 through the multiple hydrogen bonds with backbone amide groups in the hinge region as well as the hydrophobic interactions with the nonpolar residues in the P-loop, hinge region, and interdomain region. Among 18 inhibitors derived from virtual screening, 4-(2-amino-5-phenylpyrimidin-4-yl)benzene-1,3-diol (Inhibitor 2) is most likely to serve as a new molecular scaffold to optimize the biochemical potency, because it revealed submicromolar inhibitory activity in spite of its low molecular weight (279.3 amu). Indeed, a highly potent inhibitor (Inhibitor 2n) of the G2019S mutant was derived via the structure-based de novo design using the structure of Inhibitor 2 as the molecular core. The biochemical potency of Inhibitor 2n surged to the nanomolar level due to the strengthening of hydrophobic interactions in the ATP-binding site, which were presumably caused by the substitutions of small nonpolar moieties. Due to the high biochemical potency against the G2019S mutant of LRRK2 and the putatively good physicochemical properties, Inhibitor 2n is anticipated to serve as a new lead compound for the discovery of antiparkinsonian medicines.  相似文献   

18.
Aedes aegypti mosquitoes transmit several human pathogens that cause millions of deaths worldwide, mainly in Latin America. The indiscriminate use of insecticides has resulted in the development of species resistance to some such compounds. Piperidine, a natural alkaloid isolated from Piper nigrum, has been used as a hit compound due to its larvicidal activity against Aedes aegypti. In the present study, piperidine derivatives were studied through in silico methods: pharmacophoric evaluation (PharmaGist), pharmacophoric virtual screening (Pharmit), ADME/Tox prediction (Preadmet/Derek 10.0®), docking calculations (AutoDock 4.2) and molecular dynamics (MD) simulation on GROMACS-5.1.4. MP-416 and MP-073 molecules exhibiting ΔG binding (MMPBSA −265.95 ± 1.32 kJ/mol and −124.412 ± 1.08 kJ/mol, respectively) and comparable to holo (ΔG binding = −216.21 ± 0.97) and pyriproxyfen (a well-known larvicidal, ΔG binding= −435.95 ± 2.06 kJ/mol). Considering future in vivo assays, we elaborated the theoretical synthetic route and made predictions of the synthetic accessibility (SA) (SwissADME), lipophilicity and water solubility (SwissADME) of the promising compounds identified in the present study. Our in silico results show that MP-416 and MP-073 molecules could be potent insecticides against the Aedes aegypti mosquitoes.  相似文献   

19.
天然产物芦丁(Rutin)可以抑制弹性蛋白酶的活性,采用多光谱法与分子对接技术研究芦丁与弹性蛋白酶(PPE)的相互作用。研究结果表明,Rutin对PPE存在荧光猝灭效应,且为静态猝灭。Rutin与PPE能形成1∶1复合物,在298 K下其结合常数为4.90×104 L/mol,主要结合力为氢键和范德华力。根据Forster′s非辐射能量转移理论,计算得到Rutin与PPE的结合距离r为4.55 nm。紫外光谱与同步荧光光谱结果表明,Rutin可使PPE周围微环境发生改变,极性增加、亲水性增加和疏水性减弱。傅里叶变换红外光谱与圆二色光谱分析表明,Rutin使PPE的α-螺旋、β-折叠含量降低,酶结构变得松散,改变了PPE的二级结构。分子对接模拟表明,Rutin与PPE距离在0.4 nm之内的氨基酸残基共有11个,共形成5条氢键,同时还有强大的范德华力与π-阳离子相互作用,多种作用力使Rutin与PPE形成稳定的复合物,抑制了弹性蛋白酶的活性。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号