首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported (E)-β-phenyl-α,β-unsaturated carbonyl scaffold ((E)-PUSC) played an important role in showing high tyrosinase inhibitory activity and that derivatives with a 4-substituted resorcinol moiety as the β-phenyl group of the scaffold resulted in the greatest tyrosinase inhibitory activity. To examine whether the 4-substituted resorcinol moiety could impart tyrosinase inhibitory activity in the absence of the α,β-unsaturated carbonyl moiety of the (E)-PUSC scaffold, 10 urolithin derivatives were synthesized. To obtain more candidate samples, the lactone ring in synthesized urolithins was reduced to produce nine reduced urolithins. Compounds 1c (IC50 = 18.09 ± 0.25 μM), 1h (IC50 = 4.14 ± 0.10 μM), and 2a (IC50 = 15.69 ± 0.40 μM) had greater mushroom tyrosinase-inhibitory activities than kojic acid (KA) (IC50 = 48.62 ± 3.38 μM). The SAR results suggest that the 4-substituted resorcinol motif makes an important contribution to tyrosinase inhibition. To investigate whether these compounds bind to human tyrosinase, a human tyrosinase homology model was developed. Docking simulations with mushroom and human tyrosinases showed that 1c, 1h, and 2a bind to the active site of both tyrosinases with higher binding affinities than KA. Pharmacophore analyses showed that two hydroxyl groups of the 4-substituted resorcinol entity act as hydrogen bond donors in both mushroom and human tyrosinases. Kinetic analyses indicated that these compounds were all competitive inhibitors. Compound 2a inhibited cellular tyrosinase activity and melanogenesis in α-MSH plus IBMX-stimulated B16F10 melanoma cells more strongly than KA. These results suggest that 2a is a promising candidate for the treatment of skin pigment disorders, and show the 4-substituted resorcinol entity importantly contributes to tyrosinase inhibition.  相似文献   

2.
Circulating asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthesis, has been proposed as a biomarker for clinical outcome. Dimethylarginine dimethylaminohydrolase (DDAH) is the main enzyme responsible for ADMA metabolism and elimination. Adipose tissue ADMA concentrations and DDAH activity and their role in diabetes and obesity have not yet been investigated. In this study, we evaluated clinical microdialysis in combination with a sensitive analytical method (GC-MS/MS) to measure ADMA concentrations in extracellular fluid. Adipose tissue ADMA concentrations were assessed before and during an oral glucose tolerance test in lean healthy subjects and subjects with diabetes (n = 4 each), and in morbidly obese subjects before and after weight loss of 30 kg (n = 7). DDAH activity was determined in subcutaneous and visceral adipose tissue obtained during laparoscopic surgery (n = 5 paired samples). Mean interstitial ADMA concentrations did not differ between study populations (healthy 0.17 ± 0.03 μM; diabetic 0.21 ± 0.03 μM; morbidly obese 0.16 ± 0.01 and 0.17 ± 0.01 μM before and after weight loss, respectively). We did not observe any response of interstitial ADMA concentrations to the oral glucose challenge. Adipose tissue DDAH activity was negligible compared to liver tissue. Thus, adipose tissue ADMA plays a minor role in NO-dependent regulation of adipose tissue blood flow and metabolism.  相似文献   

3.
Two new norsesquiterpenoids, solanerianones A and B (1–2), together with nine known compounds, including four sesquiterpenoids, (−)-solavetivone (3), (+)-anhydro-β-rotunol (4), solafuranone (5), lycifuranone A (6); one alkaloid, N-trans-feruloyltyramine (7); one fatty acid, palmitic acid (8); one phenylalkanoid, acetovanillone (9), and two steroids, β-sitosterol (10) and stigmasterol (11) were isolated from the n-hexane-soluble part of the roots of Solanum erianthum. Their structures were elucidated on the basis of physical and spectroscopic data analyses. The anti-inflammatory activity of these isolates was monitored by nitric oxide (NO) production in lipopolysaccharide (LPS)-activated murine macrophage RAW264.7 cells. The cytotoxicity towards human lung squamous carcinoma (CH27), human hepatocellular carcinoma (Hep 3B), human oral squamous carcinoma (HSC-3) and human melanoma (M21) cell lines was also screened by using an MTT assay. Of the compounds tested, 3 exhibited the strongest NO inhibition with the average maximum inhibition (Emax) at 100 μM and median inhibitory concentration (IC50) values of 98.23% ± 0.08% and 65.54 ± 0.18 μM, respectively. None of compounds (1–9) was found to possess cytotoxic activity against human cancer cell lines at concentrations up to 30 μM.  相似文献   

4.
A series of new heteroleptic copper(II) complexes of the composition [Cu(L)(bpy)]NO3·2MeOH (1), [Cu(L)(dimebpy)]NO3·2H2O (2), [Cu(L)(phen)]NO3·2MeOH (3), [Cu(L)(bphen)]NO3·MeOH (4), [Cu(L)(dppz)]NO3·MeOH (5) was prepared, where HL = 3-(3,4-dihydroxyphenyl)-5-hydroxy-8,8-dimethyl-6-(3-methylbut-2-ene-1-yl)-4H,8H-benzo[1,2-b:3,4-b′]dipyran-4-one, (pomiferin) and bpy = 2,2′-bipyridine, dimebpy = 4,4′-dimethyl-2,2′-bipyridine, phen = 1,10-phenanthroline, bphen = 4,7-diphenyl-1,10-phenanthroline, and dppz = dipyrido[3,2-a:2′,3′-c]phenazine. The complexes were characterized using elemental analysis, infrared and UV/Vis spectroscopies, mass spectrometry, thermal analysis and conductivity measurements. The in vitro cytotoxicity, screened against eight human cancer cell lines (breast adenocarcinoma (MCF-7), osteosarcoma (HOS), lung adenocarcinoma (A549), prostate adenocarcinoma (PC-3), ovarian carcinoma (A2780), cisplatin-resistant ovarian carcinoma (A2780R), colorectal adenocarcinoma (Caco-2) and monocytic leukemia (THP-1), revealed the complexes as effective antiproliferative agents, with the IC50 values of 2.2–13.0 μM for the best performing complexes 3 and 5. All the complexes 1–5 showed the best activity against the A2780R cells (IC50 = 2.2–6.6 μM), and moreover, the complexes demonstrated relatively low toxicity on healthy human hepatocytes, with IC50 > 100 μM. The complexes were evaluated by the Annexin V/propidium iodide apoptosis assay, induction of cell cycle modifications in A2780 cells, production of reactive oxygen species (ROS), perturbation of mitochondrial membrane potential, inhibition of apoptosis and inflammation-related signaling pathways (NF-κB/AP-1 activity, NF-κB translocation, TNF-α secretion), and tested for nuclease mimicking activity. The obtained results revealed the corresponding complexes to be effective antiproliferative and anti-inflammatory agents.  相似文献   

5.
Calcineurin (or PP2B) has been reported to be involved in an array of physiological process in insects, and the calcineurin subunit A (CNA) plays a central role in calcineurin activity. We cloned the CNA gene from Plutella xylostella (PxCNA). This gene contains an ORF of 1488 bp that encodes a 495 amino acid protein, showing 98%, and 80% identities to the CNA of Bombyx mori, and humans respectively. The full-length of PxCNA and its catalytic domain (CNA1–341, defined as PxCNα) were both expressed in Escherichia coli. Purified recombinant PxCNA displayed no phosphatase activity, whereas recombinant PxCNα showed high phosphatase activity with a Km of 4.6 mM and a kcat of 0.66 S−1 against pNPP. It could be activated at different degrees by Mn2+, Ni2+, Mg2+, and Ca2+. The optimum reaction pH was about 7.5 and the optimum reaction temperature was around 45 °C. An in vitro inhibition assay showed that okadaic acid (OA) and cantharidin (CTD) competitively inhibited recombinant PxCNα activity with the IC50 values of 8.95 μM and 77.64 μM, respectively. However, unlike previous reports, pyrethroid insecticides were unable to inhibit recombinant PxCNα, indicating that the P. xylostella calcineurin appears not to be sensitive to class II pyrethroid insecticides.  相似文献   

6.
Aurora kinases were recently identified as a potential target in anticancer therapy and, amongst their available inhibitors, Tozasertib (VX-680) and Danusertib (PHA-739358) have been indicated as possible substrates of human flavin-containing monooxygenase 3 (hFMO3). Here we report the in vitro rate of oxidation of these drugs by wild-type hFMO3 and its polymorphic variant V257M. The conversion of Tozasertib and Danusertib to their corresponding metabolites, identified by LC-MS, by the purified wild-type and V257M hFMO3 show significant differences. In the case of Tozasertib, the V257M variant shows a catalytic efficiency, expressed as kcat/Km, similar to the wild-type: 0.39 ± 0.06 min−1μM−1 for V257M compared to 0.33 ± 0.04 min−1μM−1 for the wild type. On the other hand, in the case of Danusertib, V257M shows a 3.4× decrease in catalytic efficiency with kcat/Km values of 0.05 ± 0.01 min−1μM−1 for V257M and 0.17 ± 0.03 min−1μM−1 for the wild type. These data reveal how a simple V257M substitution ascribed to a single nucleotide polymorphism affects the N-oxidation of relevant anticancer drugs, with important outcome in their therapeutic effects. These findings demonstrate that codon 257 is important for activity of the hFMO3 gene and the codon change V to M has an effect on the catalytic efficiency of this enzyme.  相似文献   

7.
8.
Five new compounds, eupatodibenzofuran A (1), eupatodibenzofuran B (2), 6-acetyl-8-methoxy-2,2-dimethylchroman-4-one (3), eupatofortunone (4), and eupatodithiecine (5), have been isolated from the aerial part of Eupatorium fortunei, together with 11 known compounds (6‒16). Compounds 1 and 2 featured a new carbon skeleton with an unprecedented 1-(9-(4-methylphenyl)-6-methyldibe nzo[b,d]furan-2-yl)ethenone. Among the isolates, compound 1 exhibited potent inhibitory activity with IC50 values of 5.95 ± 0.89 and 5.55 ± 0.23 μM, respectively, against A549 and MCF-7 cells. The colony-formation assay demonstrated that compound 1 (5 μM) obviously decreased A549 and MCF-7 cell proliferation, and Western blot test confirmed that compound 1 markedly induced apoptosis of A549 and MCF-7 cells through mitochondrial- and caspase-3-dependent pathways.  相似文献   

9.
Arthrospira platensis biomass was used in order to obtain functional lipophilic compounds through green extraction technologies such as supercritical carbon dioxide fluid extraction (SFE) and microwave-assisted extraction (MAE). The temperature (T) factor was evaluated for MAE, while for SFE, pressure (P), temperature (T), and co-solvent (ethanol) (CS) were evaluated. The maximum extraction yield of the obtained oleoresin was (4.07% ± 0.14%) and (4.27% ± 0.10%) for SFE and MAE, respectively. Extracts were characterized by gas chromatography mass spectrometry (GC-MS) and gas chromatography flame ionization detector (GC-FID). The maximum contents of functional lipophilic compounds in the SFE and MAE extracts were: for carotenoids 283 ± 0.10 μg/g and 629 ± 0.13 μg/g, respectively; for tocopherols 5.01 ± 0.05 μg/g and 2.46 ± 0.09 μg/g, respectively; and for fatty acids 34.76 ± 0.08 mg/g and 15.88 ± 0.06 mg/g, respectively. In conclusion, the SFE process at P 450 bar, T 60 °C and CS 53.33% of CO2 produced the highest yield of tocopherols, carotenoids and fatty acids. The MAE process at 400 W and 50 °C gives the best extracts in terms of tocopherols and carotenoids. For yield and fatty acids, the MAE process at 400 W and 70 °C produced the highest values. Both SFE and MAE showed to be suitable green extraction technologies for obtaining functional lipophilic compounds from Arthrospira platensis.  相似文献   

10.
11.
Multicomponent reactions, especially the Ugi-four component reaction (U-4CR), provide powerful protocols to efficiently access compounds having potent biological and pharmacological effects. Thus, a diverse library of betulinic acid (BA), fusidic acid (FA), cholic acid (CA) conjugates with TEMPO (nitroxide) have been prepared using this approach, which also makes them applicable in electron paramagnetic resonance (EPR) spectroscopy. Moreover, convertible amide modified spin-labelled fusidic acid derivatives were selected for post-Ugi modification utilizing a wide range of reaction conditions which kept the paramagnetic center intact. The nitroxide labelled betulinic acid analogue 6 possesses cytotoxic effects towards two investigated cell lines: prostate cancer PC3 (IC50 7.4 ± 0.7 μM) and colon cancer HT29 (IC50 9.0 ± 0.4 μM). Notably, spin-labelled fusidic acid derivative 8 acts strongly against these two cancer cell lines (PC3: IC50 6.0 ± 1.1 μM; HT29: IC50 7.4 ± 0.6 μM). Additionally, another fusidic acid analogue 9 was also found to be active towards HT29 with IC50 7.0 ± 0.3 μM (CV). Studies on the mode of action revealed that compound 8 increased the level of caspase-3 significantly which clearly indicates induction of apoptosis by activation of the caspase pathway. Furthermore, the exclusive mitochondria targeting of compound 18 was successfully achieved, since mitochondria are the major source of ROS generation.  相似文献   

12.
A series of dehydroabietic acid (DHAA) acyl-thiourea derivatives were designed and synthesized as potent antitumor agents. The in vitro pharmacological screening results revealed that the target compounds exhibited potent cytotoxicity against HeLa, SK-OV-3 and MGC-803 tumor cell lines, while they showed lower cytotoxicity against HL-7702 normal human river cells. Compound 9n (IC50 = 6.58 ± 1.11 μM) exhibited the best antitumor activity against the HeLa cell line and even displayed more potent inhibitory activity than commercial antitumor drug 5-FU (IC50 = 36.58 ± 1.55 μM). The mechanism of representative compound 9n was then studied by acridine orange/ethidium bromide staining, Hoechst 33,258 staining, JC-1 mitochondrial membrane potential staining, TUNEL assay and flow cytometry, which illustrated that this compound could induce apoptosis in HeLa cells. Cell cycle analysis indicated that compound 9n mainly arrested HeLa cells in the S phase stage. Further investigation demonstrated that compound 9n induced apoptosis of HeLa cells through a mitochondrial pathway.  相似文献   

13.
Comparison of resistive switching memory characteristics using copper (Cu) and aluminum (Al) electrodes on GeOx/W cross-points has been reported under low current compliances (CCs) of 1 nA to 50 μA. The cross-point memory devices are observed by high-resolution transmission electron microscopy (HRTEM). Improved memory characteristics are observed for the Cu/GeOx/W structures as compared to the Al/GeOx/W cross-points owing to AlOx formation at the Al/GeOx interface. The RESET current increases with the increase of the CCs varying from 1 nA to 50 μA for the Cu electrode devices, while the RESET current is high (>1 mA) and independent of CCs varying from 1 nA to 500 μA for the Al electrode devices. An extra formation voltage is needed for the Al/GeOx/W devices, while a low operation voltage of ±2 V is needed for the Cu/GeOx/W cross-point devices. Repeatable bipolar resistive switching characteristics of the Cu/GeOx/W cross-point memory devices are observed with CC varying from 1 nA to 50 μA, and unipolar resistive switching is observed with CC >100 μA. High resistance ratios of 102 to 104 for the bipolar mode (CCs of 1 nA to 50 μA) and approximately 108 for the unipolar mode are obtained for the Cu/GeOx/W cross-points. In addition, repeatable switching cycles and data retention of 103 s are observed under a low current of 1 nA for future low-power, high-density, nonvolatile, nanoscale memory applications.  相似文献   

14.
Selective area growth of single crystalline Sn-doped In2O3 (ITO) nanowires synthesized via vapor–liquid–solid (VLS) method at 600°C was applied to improve the field emission behavior owing to the reduction of screen effect. The enhanced field emission performance reveals the reduction of turn-on fields from 9.3 to 6.6 V μm−1 with increase of field enhancement factors (β) from 1,621 to 1,857 after the selective area growth at 3 h. Moreover, we find that the screen effect also highly depends on the length of nanowires on the field emission performance. Consequently, the turn-on fields increase from 6.6 to 13.6 V μm−1 with decreasing β values from 1,857 to 699 after the 10-h growth. The detailed screen effect in terms of electrical potential and NW density are investigated in details. The findings provide an effective way of improving the field emission properties for nanodevice application.  相似文献   

15.
Plants and plant extracts play a crucial role in the research into novel antineoplastic agents. Four sesquiterpene lactones, artecanin (1), 3β-chloro-4α,10α-dihydroxy-1α,2α-epoxy-5α,7αH-guaia-11(13)-en-12,6α-olide (2), iso-seco-tanapartholide 3-O-methyl ether (3) and 4β,15-dihydro-3-dehydrozaluzanin C (4), were isolated from two traditionally used Asteraceae species (Onopordum acanthium and Artemisia asiatica). When tested for antiproliferative action on HL-60 leukemia cells, these compounds exhibited reasonable IC50 values in the range 3.6–13.5 μM. Treatment with the tested compounds resulted in a cell cycle disturbance characterized by increases in the G1 and G2/M populations, while there was a decrease in the S phase. Additionally, 1–3 elicited increases in the hypodiploid (subG1) population. The compounds elicited concentration-dependent chromatin condensation and disruption of the membrane integrity, as revealed by Hoechst 33258–propidium staining. Treatment for 24 h resulted in significant increases in activity of caspases-3 and -9, indicating that the tested sesquiterpenes induced the mitochondrial pathway of apoptosis. The proapoptotic properties of the sesquiterpene lactones were additionally demonstrated withannexin V staining. Compounds 1 and 2 increased the Bax/Bcl-2 expression and decreased the expressions of CDK1 and cyclin B2, as determined at the mRNA level by means of RT-PCR. These experimental results indicate that sesquiterpene lactones may be regarded as potential starting structures for the development of novel anticancer agents.  相似文献   

16.
Cubic PtCu nanocages (NCs) were successfully synthesized through a redox reaction using cuprous oxide (Cu2O) as a sacrificial template and reducing agent. The porous PtCu NCs were composed of amounts of PtCu nanograins with an average particle size of 2.9 nm. The electrocatalytic performance of the PtCu NC electrode towards H2O2 was studied by cyclic voltammetry (CV) and chronoamperometry. The prepared PtCu NC electrode exhibited excellent electrocatalytic activity towards H2O2, with a wide liner range from 5 μM to 22.25 mM, a relatively high sensitivity of 295.3 μA mM-1 cm-2, and a low detection limit of 5 μM (S/N = 3). The hollow porous nanostructure has potential applications in biosensors.  相似文献   

17.
The novel approach for deposition of iron oxide nanoparticles with narrow size distribution supported on different sized graphene oxide was reported. Two different samples with different size distributions of graphene oxide (0.5 to 7 μm and 1 to 3 μm) were selectively prepared, and the influence of the flake size distribution on the mitochondrial activity of L929 with WST1 assay in vitro study was also evaluated. Little reduction of mitochondrial activity of the GO-Fe3O4 samples with broader size distribution (0.5 to 7 μm) was observed. The pristine GO samples (0.5 to 7 μm) in the highest concentrations reduced the mitochondrial activity significantly. For GO-Fe3O4 samples with narrower size distribution, the best biocompatibility was noticed at concentration 12.5 μg/mL. The highest reduction of cell viability was noted at a dose 100 μg/mL for GO (1 to 3 μm). It is worth noting that the chemical functionalization of GO and Fe3O4 is a way to enhance the biocompatibility and makes the system independent of the size distribution of graphene oxide.  相似文献   

18.
Article describes the synthesis of fifteen β-hydroxy-β-arylalkanoic acids by Reformatsky reaction using the 1-ethoxyethyl-2-bromoalkanoates, aromatic or cycloalkyl ketones or aromatic aldehydes. The short survey of previously reported synthetic procedures for title compounds, is given. The majority of obtained compounds exert antiproliferative activity in vitro toward human: HeLa, Fem-X cells, K562, and LS174 cells, having IC50 values from 62.20 to 205 μM. The most active compound is 3-OH-2,2-di-Me-3-(4- biphenylyl)-butanoic acid, having the IC50 value 62.20 μM toward HeLa cells. Seven examined compounds did not affect proliferation of healthy human blood peripheral mononuclear cells (PBMC and PBMC+ PHA), IC50 > 300 μM. The preliminary QSAR results show that estimated lipophilicity of compounds influences their antiproliferative activity in the first place. The ability of dehydration, and the spatial arrangement of hydrophobic portion, HBD and HBA in molecules are has almost equal importance as lipophilicity.  相似文献   

19.
20.
Melanoma, the deadliest form of skin cancer, is still one of the most difficult cancers to treat despite recent advances in targeted and immune therapies. About 50% of advanced melanoma do not benefit of such therapies, and novel treatments are requested. Curcumin and its analogs have shown good anticancer properties and are being considered for use in combination with or sequence to recent therapies to improve patient outcomes. Our group previously published the synthesis and anticancer activity characterization of a novel curcumin-related compound against melanoma and neuroblastoma cells (D6). Here, two hydroxylated biphenyl compounds—namely, compounds 11 and 12—were selected among a small collection of previously screened C2-symmetric hydroxylated biphenyls structurally related to D6 and curcumin, showing the best antitumor potentiality against melanoma cells (IC50 values of 1.7 ± 0.5 μM for 11 and 2.0 ± 0.7 μM for 12) and no toxicity of normal fibroblasts up to 32 µM. Their antiproliferative activity was deeply characterized on five melanoma cell lines by performing dose-response and clonal growth inhibition assays, which revealed long-lasting and irreversible effects for both compounds. Apoptosis induction was ascertained by the annexin V and TUNEL assays, whereas Western blotting showed caspase activation and PARP cleavage. A cell cycle analysis, following cell treatments with either compound 11 or 12, highlighted an arrest in the G2/M transition. Taking all this evidence together, 11 and 12 were shown to be good candidates as lead compounds to develop new anticancer drugs against malignant melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号