首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Anti-CD20 monoclonal antibodies (MAbs) have revolutionized the treatment of B-cell leukemia and lymphoma. However, many patients do not respond to such treatment due to either deficiency of the complementary immune response or resistance to apoptosis. Other currently available treatments are often inadequate or induce major side effects. Therefore, there is a constant need for improved therapies. The prostaglandin E2 receptor 4 (EP4) receptor has been identified as a promising therapeutic target for hematologic B-cell malignancies. Herein, we report that EP4 receptor agonists PgE1-OH and L-902688 have exhibited enhanced cytotoxicity when applied together with anti-CD20 MAbs rituximab, ofatumumab and obinutuzumab in vitro in Burkitt lymphoma cells Ramos, as well as in p53-deficient chronic lymphocytic leukemia (CLL) cells MEC-1. Moreover, the enhanced cytotoxic effects of EP4 receptor agonists and MAbs targeting CD20 have been identified ex vivo on primary lymphocytes B obtained from patients diagnosed with CLL. Incubation of cells with PgE1-OH and L-902688 preserved the expression of CD20 molecules, further confirming the anti-leukemic potential of EP4 receptor agonists in combination with anti-CD20 MAbs. Additionally, we demonstrated that the EP4 receptor agonist PgE-1-OH induced apoptosis and inhibited proliferation via the EP4 receptor triggering in CLL. This work has revealed very important findings leading towards the elucidation of the anticancer potential of PgE1-OH and L-902688, either alone or in combination with MAbs. This may contribute to the development of potential therapeutic alternatives for patients with B-cell malignancies.  相似文献   

2.
In the course of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), the infiltration of lymphocytes and other inflammatory cells across the blood–brain barrier is associated with interactions between adhesion molecules expressed by infiltrating cells and vascular endothelium. Monoclonal antibodies (mAb) against the α4 subunit of α4-β1 integrin (VLA-4) show beneficial effects in both MS and EAE. (1) Background: The aim of this study was to examine the expression of selected adhesion molecules: VLA-4, VCAM-1, LFA-1, ICAM-1 and PECAM-1 in the successive phases of EAE and the effect of anti-VLA-4 mAb treatment on that expression. (2) Methods: EAE was induced in C57BL/6 mice by immunization with MOG35–55 peptide. The animals were killed in three successive phases of the disease: onset (day 13), peak (day 18) and chronic (day 28). Frozen sections of the lumbar spinal cord were examined by quantitative immunofluorescence microscopy. The expression of the studied molecules was quantified as the percentage of the cross-sectioned spinal cord lesion area occupied by immunopositive structures. (3) Results: The expression of the studied molecules showed two temporal patterns: (1) an increase in the onset phase, a maximum in the peak phase and a decrease in the chronic phase, which corresponded to the temporal pattern of the clinical score, the number of lesions and the inflammation level (ICAM-1, LFA-1 and PECAM-1), and (2) an increase in the peak phase and no significant change or further increase in the chronic phase (VCAM-1, VLA-4). Among the molecules studied, ICAM-1 and LFA-1 exhibited the highest expression levels in the peak phase of EAE. Anti-VLA-4 mAb inhibited the expression of not only VLA-4 but also other adhesion molecules. (4) Conclusions: The interactions of adhesion molecules governing the migration of leukocytes across the blood–brain barrier change in the successive phases of EAE. The therapeutic mechanism of anti-VLA-4 mAb treatment seems to include a complex influence on a variety of adhesion molecules expressed by infiltrating cells and vascular endothelium.  相似文献   

3.
Pertussis toxin (PTX) is a required co-adjuvant for experimental autoimmune encephalomyelitis (EAE) induced by immunization with myelin antigen. However, PTX’s effects on EAE induced by the transfer of myelin-specific T helper cells is not known. Therefore, we investigated how PTX affects the Th17 transfer EAE model (Th17-EAE). We found that PTX significantly reduced Th17-EAE by inhibiting chemokine-receptor-dependent trafficking of Th17 cells. Strikingly, PTX also promoted the accumulation of B cells in the CNS, suggesting that PTX alters the disease toward a B-cell-dependent pathology. To determine the role of B cells, we compared the effects of PTX on Th17-EAE in wild-type (WT) and B-cell-deficient (µMT) mice. Without PTX treatment, disease severity was equivalent between WT and µMT mice. In contrast, with PTX treatment, the µMT mice had significantly less disease and a reduction in pathogenic Th17 cells in the CNS compared to the WT mice. In conclusion, this study shows that PTX inhibits the migration of pathogenic Th17 cells, while promoting the accumulation of pathogenic B cells in the CNS during Th17-EAE. These data provide useful methodological information for adoptive-transfer Th17-EAE and, furthermore, describe another important experimental system to study the pathogenic mechanisms of B cells in multiple sclerosis.  相似文献   

4.
Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system (CNS). MS commonly affects the cerebellum causing acute and chronic symptoms. Cerebellar signs significantly contribute to clinical disability, and symptoms such as tremor, ataxia, and dysarthria are difficult to treat. Fibroblast growth factors (FGFs) and their receptors (FGFRs) are involved in demyelinating pathologies such as MS. In autopsy tissue from patients with MS, increased expression of FGF1, FGF2, FGF9, and FGFR1 was found in lesion areas. Recent research using mouse models has focused on regions such as the spinal cord, and data on the expression of FGF/FGFR in the cerebellum are not available. In recent EAE studies, we detected that oligodendrocyte-specific deletion of FGFRs results in a milder disease course, less cellular infiltrates, and reduced neurodegeneration in the spinal cord. The objective of this study was to characterize the role of FGFR1 in oligodendrocytes in the cerebellum. Conditional deletion of FGFR1 in oligodendrocytes (Fgfr1ind−/−) was achieved by tamoxifen application, EAE was induced using the MOG35-55 peptide. The cerebellum was analyzed by histology, immunohistochemistry, and western blot. At day 62 p.i., Fgfr1ind−/− mice showed less myelin and axonal degeneration compared to FGFR1-competent mice. Infiltration of CD3(+) T cells, Mac3(+) cells, B220(+) B cells and IgG(+) plasma cells in cerebellar white matter lesions (WML) was less in Fgfr1ind−/−mice. There were no effects on the number of OPC or mature oligodendrocytes in white matter lesion (WML). Expression of FGF2 and FGF9 associated with less myelin and axonal degeneration, and of the pro-inflammatory cytokines IL-1β, IL-6, and CD200 was downregulated in Fgfr1ind−/− mice. The FGF/FGFR signaling protein pAkt, BDNF, and TrkB were increased in Fgfr1ind−/− mice. These data suggest that cell-specific deletion of FGFR1 in oligodendrocytes has anti-inflammatory and neuroprotective effects in the cerebellum in the EAE disease model of MS.  相似文献   

5.
To determine whether mitigating the harmful effects of circulating microvesicle-associated inducible nitric oxide (MV-A iNOS) in vivo increases the survival of challenged mice in three different mouse models of sepsis, the ability of anti-MV-A iNOS monoclonal antibodies (mAbs) to rescue challenged mice was assessed using three different mouse models of sepsis. The vivarium of a research laboratory Balb/c mice were challenged with an LD80 dose of either lipopolysaccharide (LPS/endotoxin), TNFα, or MV-A iNOS and then treated at various times after the challenge with saline as control or with an anti-MV-A iNOS mAb as a potential immunotherapeutic to treat sepsis. Each group of mice was checked daily for survivors, and Kaplan–Meier survival curves were constructed. Five different murine anti-MV-A iNOS mAbs from our panel of 24 murine anti-MV-A iNOS mAbs were found to rescue some of the challenged mice. All five murine mAbs were used to genetically engineer humanized anti-MV-A iNOS mAbs by inserting the murine complementarity-determining regions (CDRs) into a human IgG1,kappa scaffold and expressing the humanized mAbs in CHO cells. Three humanized anti-MV-A iNOS mAbs were effective at rescuing mice from sepsis in three different animal models of sepsis. The effectiveness of the treatment was both time- and dose-dependent. Humanized anti-MV-A iNOS rHJ mAb could rescue up to 80% of the challenged animals if administered early and at a high dose. Our conclusions are that MV-A iNOS is a novel therapeutic target to treat sepsis; anti-MV-A iNOS mAbs can mitigate the harmful effects of MV-A iNOS; the neutralizing mAb’s efficacy is both time- and dose-dependent; and a specifically targeted immunotherapeutic for MV-A iNOS could potentially save tens of thousands of lives annually and could result in improved antibiotic stewardship.  相似文献   

6.
目的制备并鉴定玉米赤霉烯酮(Zearalenone,ZEN)抗独特型单抗Ab2β-1D5。方法将ZEN单抗1G4与载体蛋白KLH偶联作为免疫原,免疫BALB/c小鼠,取免疫小鼠脾细胞,与小鼠骨髓瘤细胞SP2/0融合后,以ZEN单抗Fab片段作为包被抗原,间接ELISA法筛选阳性杂交瘤细胞。经小鼠腹腔注射杂交瘤细胞,制备腹水型单抗,并经Protein G亲和层析柱进行纯化。间接ELISA法检测ZEN抗独特型单抗的抗体效价及特异性;间接竞争ELISA法检测ZEN抗独特型单抗类型、灵敏度及其与ZEN毒素间的相关性。结果共获得6株稳定分泌ZEN抗独特型单抗的杂交瘤细胞株,腹水型抗体效价为1∶1.2×105~1∶2.0×105;6株单抗均为β型抗独特型抗体(Ab2β),其中Ab2β-1D5抗体灵敏度最高,对ZEN的IC50值达10.09 ng/ml,其与ZEN毒素呈线性相关(r=0.990);ZEN抗独特型单抗与莱克多巴胺、重金属铅、铬及虾过敏原单抗均无交叉反应,特异性良好。结论已成功制备玉米赤霉烯酮抗独特型单抗,该抗体与ZEN间存在"内影像"关系,可以替代ZEN毒素标准品,用于建立ZEN的无毒免疫学检测技术。  相似文献   

7.
8.
Mucin 21(Muc21)/epiglycanin is expressed on apical surfaces of squamous epithelia and has potentially protective roles, which are thought to be associated with its unique glycoforms, whereas its aberrant glycosylation is implicated in the malignant behaviors of some carcinomas. Despite the importance of glycoforms, we lack tools to detect specific glycoforms of mouse Muc21. In this study, we generated two monoclonal antibodies (mAbs) that recognize different glycoforms of Muc21. We used membrane lysates of Muc21-expressing TA3-Ha cells or Chinese hamster ovary (CHO)-K1 cells transfected with Muc21 as antigens. Specificity testing, utilizing Muc21 glycosylation variant cells, showed that mAb 1A4-1 recognized Muc21 carrying glycans terminated with galactose residues, whereas mAb 18A11 recognized Muc21 carrying sialylated glycans. mAb 1A4-1 stained a majority of mouse mammary carcinoma TA3-Ha cells in vitro and in engrafted tumors in mice, whereas mAb 18A11 recognized only a subpopulation of these. mAb 1A4-1 was useful in immunohistochemically detecting Muc21 in normal squamous epithelia. In conclusion, these mAbs recognize distinct Muc21 epitopes formed by combinations of peptide portions and O-glycans.  相似文献   

9.
Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4+ T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28% in ASA-treated mice compared to 56.11 ± 1.46% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A2 were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS.  相似文献   

10.
CD28 is one of the key molecules for co-stimulatory signallingin T cells. Here, novel ligands (affibodies) showing selectivebinding to human CD28 (hCD28) have been selected by phage displaytechnology from a protein library constructed through combinatorialmutagenesis of a 58-residue three-helix bundle domain derivedfrom staphylococcal protein A. Analysis of selected affibodiesshowed a marked sequence homology and biosensor analyses showedthat all investigated affibodies bound to hCD28 with micromolaraffinities (KD). No cross-reactivity towards the related proteinhuman CTLA-4 could be observed. This lack of cross-reactivityto hCTLA-4 suggests that the recognition site on hCD28 for theaffibodies resides outside the conserved MYPPPYY motif. Theapparent binding affinity for hCD28 could be improved throughfusion to an Fc fragment fusion partner, resulting in a divalentpresentation of the affibody ligand. For the majority of selectedanti-CD28 affibodies, in co-culture experiments involving JurkatT-cells and CHO cell lines transfected to express human CD80(hCD80) or LFA-3 (hLFA-3) on the cell surface, respectively,pre-incubation of Jurkat cells with affibodies resulted in inhibitionof IL-2 production when they were co-cultured with CHO (hCD80+)cells, but not with CHO (hLFA-3+) cells. For one affibody variantdenoted ZCD28:5 a clear concentration-dependent inhibition wasseen, indicating that this affibody binds hCD28 and specificallyinterferes in the interaction between hCD28 and hCD80. Received March 11, 2003; revised June 30, 2003; accepted July 30, 2003.  相似文献   

11.
Botulism, a disease of humans characterized by prolonged paralysis, is caused by botulinum neurotoxins (BoNTs), the most poisonous substances known. There are seven serotypes of BoNT (A-G) which differ from each other by 34-64% at the amino acid level. Each serotype is uniquely recognized by polyclonal antibodies, which originally were used to classify serotypes. To determine if there existed monoclonal antibodies (mAbs) capable of binding two or more serotypes, we evaluated the ability of 35 yeast-displayed single-chain variable fragment antibodies generated from vaccinated humans or mice for their ability to bind multiple BoNT serotypes. Two such clonally related human mAbs (1B18 and 4E17) were identified that bound BoNT serotype A (BoNT/A) and B or BoNT/A, B, E and F, respectively, with high affinity. Using molecular evolution techniques, it proved possible to both increase affinity and maintain cross-serotype reactivity for the 4E17 mAb. Both 1B18 and 4E17 bound to a relatively conserved epitope at the tip of the BoNT translocation domain. Immunoglobulin G constructed from affinity matured variants of 1B18 and 4E17 were evaluated for their ability to neutralize BoNT/B and E, respectively, in vivo. Both antibodies potently neutralized BoNT in vivo demonstrating that this epitope is functionally important in the intoxication pathway. Such cross-serotype binding and neutralizing mAbs should simplify the development of antibody-based BoNT diagnostics and therapeutics.  相似文献   

12.
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease that affects small sized blood vessels and can lead to serious complications in the lungs and kidneys. The prominent presence of ANCA autoantibodies in this disease implicates B cells in its pathogenesis, as these are the precursors of the ANCA-producing plasma cells (PCs). Further evidence supporting the potential role of B lineage cells in vasculitis are the increased B cell cytokine levels and the dysregulated B cell populations in patients. Confirmation of the contribution of B cells to pathology arose from the beneficial effect of anti-CD20 therapy (i.e., rituximab) in AAV patients. These anti-CD20 antibodies deplete circulating B cells, which results in amelioration of disease. However, not all patients respond completely, and this treatment does not target PCs, which can maintain ANCA production. Hence, it is important to develop more specific therapies for AAV patients. Intracellular signalling pathways may be potential therapeutic targets as they can show (disease-specific) alterations in certain B lineage cells, including pathogenic B cells, and contribute to differentiation and survival of PCs. Preliminary data on the inhibition of certain signalling molecules downstream of receptors specific for B lineage cells show promising therapeutic effects. In this narrative review, B cell specific receptors and their downstream signalling molecules that may contribute to pathology in AAV are discussed, including the potential to therapeutically target these pathways.  相似文献   

13.
目的探讨B细胞参与MOG35-55诱导的实验性自身免疫性脑脊髓炎(Experimental autoimmune encelphalomyelitis,EAE)小鼠模型的可能机制。方法采用MOG35-55肽段免疫C57BL/6小鼠建立EAE模型;采用临床评分检测EAE模型建立情况,HE和快蓝染色观察脊髓炎性细胞浸润和脱髓鞘状况,流式细胞术检测B细胞活化程度,免疫组化法检测脾组织生发中心的形成,ELISA法检测IgG1、IgG2a和IgG2b的分泌水平。结果成功建立了MOG35-55诱导的EAE小鼠模型,EAE组临床评分明显高于弗氏完全佐剂(Complete Freund adjuvant,CFA)组(P<0.001),EAE组小鼠脊髓可见明显的炎性细胞浸润和脱髓鞘斑块;在EAE组发病起始期(免疫后第5天和第8天),外周免疫器官活化B细胞表达水平明显高于CFA组(P<0.01);在发病高峰期(免疫后第15天)EAE组小鼠脾中形成生发中心,而CFA组未见生发中心形成,且外周血抗MOG35-55抗体分泌水平明显高于CFA组(P<0.005)。结论 MOG35-33肽段可以诱导B细胞活化,进而可能通过发挥体液免疫作用介导EAE疾病的发生。  相似文献   

14.
CD38 is a transmembrane glycoprotein expressed by T-cells. It has been reported that patients with systemic lupus erythematosus (SLE) showed increased CD38+CD25+ T-cells correlating with immune activation and clinical signs. Contrariwise, CD38 deficiency in murine models has shown enhanced autoimmunity development. Recent studies have suggested that CD38+ regulatory T-cells are more suppressive than CD38 regulatory T-cells. Thus, we have suggested that CD38 overexpression in SLE patients could play a role in regulating immune activation cells instead of enhancing it. This study found a correlation between CD38 with FoxP3 expression and immunosuppressive molecules (CD69, IL-10, CTLA-4, and PD-1) in T-cells from lupus-prone mice (B6.MRL-Faslpr/J). Additionally, B6.MRL-Faslpr/J mice showed a decreased proportion of CD38+ Treg cells regarding wild-type mice (WT). Furthermore, Regulatory T-Cells (Treg cells) from CD38-/- mice showed impairment in expressing immunosuppressive molecules and proliferation after stimulation through the T-cell receptor (TCR). Finally, we demonstrated an increased ratio of IFN-γ/IL-10 secretion in CD38-/- splenocytes stimulated with anti-CD3 compared with the WT. Altogether, our data suggest that CD38 represents an element in maintaining activated and proliferative Treg cells. Consequently, CD38 could have a crucial role in immune tolerance, preventing SLE development through Treg cells.  相似文献   

15.
Background: Monoclonal antibodies (mAbs) against cancer biomarkers are key reagents in diagnosis and therapy. One such relevant biomarker is a preferentially expressed antigen in melanoma (PRAME) that is selectively expressed in many tumors. Knowing mAb’s epitope is of utmost importance for understanding the potential activity and therapeutic prospective of the reagents. Methods: We generated a mAb against PRAME immunizing mice with PRAME fragment 161–415; the affinity of the antibody for the protein was evaluated by ELISA and SPR, and its ability to detect the protein in cells was probed by cytofluorimetry and Western blotting experiments. The antibody epitope was identified immobilizing the mAb on bio-layer interferometry (BLI) sensor chip, capturing protein fragments obtained following trypsin digestion and performing mass spectrometry analyses. Results: A mAb against PRAME with an affinity of 35 pM was obtained and characterized. Its epitope on PRAME was localized on residues 202–212, taking advantage of the low volumes and lack of fluidics underlying the BLI settings. Conclusions: The new anti-PRAME mAb recognizes the folded protein on the surface of cell membranes suggesting that the antibody’s epitope is well exposed. BLI sensor chips can be used to identify antibody epitopes.  相似文献   

16.
Myosin 1g (Myo1g) is a mechanoenzyme associated with actin filaments, expressed exclusively in hematopoietic cells, and involved in various cellular functions, including cell migration, adhesion, and membrane trafficking. Despite the importance of Myo1g in distinct functions, there is currently no monoclonal antibody (mAb) against Myo1g. mAbs are helpful tools for the detection of specific antigens in tumor cells and other tissues. The development of mAbs against targeted dysregulated molecules in cancer cells remains a crucial tool for aiding in the diagnosis and the treatment of patients. Using hybridoma technology, we generated a panel of hybridomas specific for Myo1g. ELISA, immunofluorescence, and Western blot assay results revealed the recognition of Myo1g by these novel monoclonal antibodies in normal and transformed T and B cells. Here, we report the development and application of new monoclonal antibodies against Myo1g for their potential use to detect its overexpression in acute lymphoblastic leukemia (ALL) patients.  相似文献   

17.
Multiple sclerosis (MS) is an inflammatory autoimmune disease characterized by imbalanced immune regulatory networks, and MS patient-derived T effector cells are inefficiently suppressed through regulatory T cells (Treg), a phenomenon known as Treg resistance. In the current study we investigated T cell function in MS patients before and after interferon-beta therapy. We compared cytokine profile, responsiveness for Treg-mediated suppression ex vivo and evaluated reactivity of T cells in vivo using a humanized mouse model. We found that CD4+ and CD8+ T cells of therapy-naive MS patients were resistant to Treg-mediated suppression. Treg resistance is associated with an augmented IL-6 production, enhanced IL-6 receptor expression, and increased PKB/c-Akt phosphorylation. These parameters as well as responsiveness of T cells to Treg-mediated suppression were restored after interferon-beta therapy of MS patients. Following transfer into immunodeficient mice, MS T cells induced a lethal graft versus host disease (GvHD) and in contrast to T cells of healthy volunteers, this aggressive T cell response could not be controlled by Treg, but was abolished by anti-IL-6 receptor antibodies. However, magnitude and lethality of GvHD induced by MS T cells was significantly decreased after interferon-beta therapy and the reaction was prevented by Treg activation in vivo. Our data reveals that interferon-beta therapy improves the immunoregulation of autoaggressive T effector cells in MS patients by changing the IL-6 signal transduction pathway, thus restoring their sensitivity to Treg-mediated suppression.  相似文献   

18.
Monoclonal antibodies (mAbs) are used extensively for analytical, diagnostic and therapeutic applications. The purification of mAbs from cell culture supernatants typically consists of protein A, G or L affinity chromatography, often in association with other conventional chromatographic techniques such as ion exchange and gel filtration. We report the application of Gradiflow? preparative electrophoresis technology, for the separation of mouse and mouse/human chimeric mAbs from cell culture supernatants in their native state. The one‐step purification of murine mAb HuLym3 shows that mAbs can be purified from hybridoma cell culture supernatants to high purity, and is thus an alternative to other purification methods based on conventional and affinity chromatography for the production of mAbs for analytical and diagnostic applications. A mouse/human IgG1 chimeric mAb produced by Chinese hamster ovary cells was also purified from cell culture supernatant, and the purity achieved suggests that Gradiflow? electrophoresis could replace affinity chromatography in the downstream processing of mAbs for therapeutic use. Gradiflow? electrophoresis technology is scaleable and thus is applicable to industrial‐scale purification of mAbs. Copyright © 2005 Society of Chemical Industry  相似文献   

19.
Dopamine is a neurotransmitter that mediates neuropsychological functions of the central nervous system (CNS). Recent studies have shown the modulatory effect of dopamine on the cells of innate and adaptive immune systems, including Th17 cells, which play a critical role in inflammatory diseases of the CNS. This article reviews the literature data on the role of dopamine in the regulation of neuroinflammation in multiple sclerosis (MS). The influence of dopaminergic receptor targeting on experimental autoimmune encephalomyelitis (EAE) and MS pathogenesis, as well as the therapeutic potential of dopaminergic drugs as add-on pathogenetic therapy of MS, is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号