首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of non‐ionic polysaccharide guar gum (GG) in the presence of surfactants (anionic SDS, non‐ionic TX‐100, cationic CTAB and their equimolar mixtures) from their NaCl solutions onto an alumina surface (Al2O3) was studied spectrophotometrically. This study is important in light of the many disagreements concerning the structure and behaviour of mixtures containing polymers and surfactants at the surface of an adsorbent. The presence of surfactant caused an increase in the GG adsorption in all studied systems as a consequence of the formation of complexes. Among the single surfactants the highest increase in the GG adsorption was observed in the presence of CTAB. However, the usage of mixtures of the surfactants caused a much more effective increase in the GG adsorption on the alumina surface because of the synergistic effect of the surfactants. In order to get some information on the structure of the electrical double layer (edl), the surface charge density of alumina was determined and zeta potential measurements were conducted. The obtained data showed that the adsorption of GG or GG/surfactant complexes on the metal oxide surface strongly influences a diffused part of the edl, whereas a compact part of the edl is not affected. The colloidal stability of the alumina suspensions was measured in the presence and absence of GG and surfactants. It was found that GG and the mixtures of GG and surfactants can improve the stability of the suspensions.  相似文献   

2.
Adsorption characteristics of cationic dyes and surfactants onto clay and sandstone from a single component system were studied using toluidine blue (TB) and cetyl trimethylammonium bromide (CTAB). Equilibrium data of TB and CTAB in the single solute systems fit well to the Langmuir and the Freundlich adsorption isotherms. Competitive adsorption was observed between dye and surfactant cations. The effect of sodium chloride on dye and surfactant adsorption was studied in TB–NaCl and CTAB–NaCl binary systems. Equilibrium adsorption for binary systems was analyzed by using the extended Langmuir and the extended Freundlich models. Adsorption results for the TB–CTAB system onto both adsorbents were also well described by the Sheindorf–Rebuhn–Sheintuch (SRS) model for multi-component systems. Free energy changes for adsorption systems were calculated using thermodynamic equilibrium constants evaluated from selectivity coefficients of the binary systems. The site distribution functions estimated using Freundlich model parameters gave valuable information about the ratio of the adsorption sites on adsorbent surface having different affinity for competing cations.  相似文献   

3.
The ability of the wet jet milling method to pulverize nanosized alumina suspensions for sheet casting has been discussed from the point of view of particle–particle separation distance in the slurry. The amounts of polymer additives were optimized to give a stable, ready-to-cast slurry based on rheological measurements. Assuming that the polymers take on a sandwich configuration between particles poly (acrylic acid)/polyvinyl alcohol (surface/PAA/PVA/PAA/surface layers), then 9.1 nm, the calculated surface-to-surface separation distance (SSD) between particles could be taken as the criterion to prepare crack-free sheets. Indeed, the sheets prepared from the slurries, satisfying the above condition, were crack free. However, for the slurries with less space between particles, due to the inability of PVA to bind them all, cracks were formed in the cast sheets. The agglomerated particles in the slurries also influenced the macroscopic behavior of the sheets. Therefore, a well-dispersed slurry with a large enough SSD is necessary for the preparation of crack-free ceramic sheets from nanosized particles.  相似文献   

4.
The dynamic interfacial properties and dilational rheology of gemini sulfonate surfactant (SGS) and its mixtures with quaternary ammonium bromides (DTAB, CTAB) at the air–water interface were investigated using drop shape analysis. Results suggest that the adsorption process of these surfactants is diffusion-controlled at dilute concentrations, whereas the adsorption mechanism gradually shifts to a mixed kinetic-diffusion control with increasing surfactant concentration. The mixed surfactant system possesses the best surface activity when the molar ratios of SGS/DTAB and SGS/CTAB mixtures are 9:10. The formation of catanionic complexes shields the electrostatic repulsion between surfactant molecules and lowers the electrostatic adsorption barrier. Therefore, SGS/DTAB and SGS/CTAB mixtures exhibit higher adsorption rates than either component alone. The effects of oscillating frequency and surfactant concentration on the surface dilational properties of SGS, DTAB, CTAB, SGS/DTAB, and SGS/CTAB mixtures were also determined. As the oscillating frequency increases, the dilational elasticity of these surfactants gradually increases. The dilational elasticity peaks at a certain concentration, which is less than the critical micelle concentration (CMC). Results show that the dilational elasticity of SGS/DTAB and SGS/CTAB mixtures is higher than that of either component, resulting from the formation of a denser monomolecular adsorption layer at the air–water interface. Our study provides a basis for understanding the interaction mechanism of catanionic surfactant mixtures containing Gemini surfactant at the air–water interface.  相似文献   

5.
A comparative study of metal ? polymer complexes of Cu(I) with polybenzoxazinoneimide (PBOI) and its prepolymer imide‐containing polyamic acid (PAA) as novel membrane materials for methyl tertiary butyl ether (MTBE) purification was undertaken. The structure, physical parameters and transport properties were characterized in detail to analyse the separation performance of the membranes and obtain new knowledge on the interdependence of the chemical structure and physical data with transport parameters. Thermally initiated conversion of PAA ? Cu(I) to PBOI ? Cu(I) was studied by TGA and DSC. The thermal conversion increases the polymer glass transition temperature and membrane density. Both polymers were applied to pervaporation separation of MTBE from methanol impurities. Membranes based on PAA are highly effective in MTBE purification and preferably permeate methanol. The transport properties of PAA ? Cu(I) membrane are compared with those of known membranes. © 2017 Society of Chemical Industry  相似文献   

6.
The intermolecular complexation of non‐ionic polymers with weak acids having chemically complementary structures is an important approach to modify the viscosity of polymer solutions. In this study intermolecular complexation of hydroxypropyl methyl cellulose (HPMC) with polyacrylic acid (PAA) in an aqueous medium was studied. The study focuses on the factors affecting the complexation and rheological behavior of the HPMC/PAA system including the stoichiometric ratio of the two polymers, the molecular weight of the PAA, and the pH and ionic strength of the medium. Results showed that interpolymer complexation occurred between HPMC and PAA at low pH. It was attributed to hydrogen bonding between the ? COOH group of the PAA and the ? OH group of the HPMC. Under basic conditions (above the critical pH) the viscosity of the interpolymer complex increased accompanied by a transition from a compact interpolymer complexation structure to an extended conformation of interpolymer associates. Introduction of monovalent and multivalent salts (at > pHcritical) decreased the viscosity of the HPMC/PAA interpolymer associates and favored the formation of interpolymer complexes between the two polymers. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
Cationic latexes based on styrene and butyl acrylate using cetyl trimethyl ammonium bromide (CTAB) as surfactant were carried out using both batch and semicontinuous emulsion polymerization. Monomer conversion, particle size and its distribution, ζ potential, latex surface tension were determined as function of CTAB levels. Evolutions of these properties were followed, and the results from batch compared to those from semicontinuous process. It was revealed that polymerization rate in batch process was enhanced with CTAB, and the polymerization rate was controlled by addition rate of the preemulsion in semicontinuous process. Molecular adsorption area of CTAB on latex particle surface was calculated, which showed clearly that ζ potential and surface tension in the latex were directly related with surfactant adsorption on the particle surface. The molecular surface adsorption area of CTAB on latex particle could be used to explain the evolution of latex properties such as ζ potential and latex surface tension.  相似文献   

8.
The interactions between soluble collagen (C) from calf skin and poly(acrylic acid) (PAA) were studied. Mixing aqueous solutions of collagen and PAA, at various pH values (2.5–4), leads to the formation of complexes that precipitate in the form of insoluble aggregates. The effects of mixture composition, pH, and ionic strength on C/PAA complex formation were investigated by gravimetric, turbidimetric, and conductometric analysis. The experimental results indicate that the complexes form through electrostatic interactions. Homogeneous solid films with variable C/PAA ratios were obtained by casting from solutions in which the pH was adjusted just over the isoelectric point of collagen, thus avoiding the attractive ionic interactions responsible for the complexation of collagen and PAA molecules. A relevant result obtained is related to the possibility of restoring the ionic interactions between the two polymers inside the solid films. Mixture composition and pH appear to influence the thermal properties of both complexes and films. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 971–976, 1999  相似文献   

9.
Typical porous silica (SBA-15) has been modified with pore expander agent (1,3,5-trimethylbenzene) and fluoride-species to diminish the length of the channels to obtain materials with different textural properties, varying the Si/Zr molar ratio between 20 and 5. These porous materials were characterized by X-ray Diffraction (XRD), N2 adsorption/desorption isotherms at −196 °C and X-ray Photoelectron Spectroscopy (XPS), obtaining adsorbent with a surface area between 420–337 m2 g−1 and an average pore diameter with a maximum between 20–25 nm. These materials were studied in the adsorption of human blood serum proteins (human serum albumin—HSA and immunoglobulin G—IgG). Generally, the incorporation of small proportions was favorable for proteins adsorption. The adsorption data revealed that the maximum adsorption capacity was reached close to the pI. The batch purification experiments in binary human serum solutions showed that Si sample has considerable adsorption for IgG while HSA adsorption is relatively low, so it is possible its separation.  相似文献   

10.
Strength of Green Ceramics with Low Binder Content   总被引:2,自引:0,他引:2  
Acrylic-based polymers are common binders that impart high green strength (>2 MPa) at low concentrations (<5.0 vol%). Strength at low binder concentrations may be determined by chemical bonding at the ceramic–polymer interface. We have studied the binding mechanisms as a function of ceramic surface chemistry using a cross-linkable binder, which is based on a soluble poly(acrylic acid) (PAA, MW = 60 000) and glycerol. The cross-linked PAA binder system has been integrated into a solid freeform fabrication process, which provides a means of fabricating very reproducible green bodies, including SiO2, TiO2, Al2O3, multicomponent oxides, and non-oxides, with uniform density and composition. The ceramic parts contain only 2.5 vol% binder (solids basis), which increases the strength of the ceramic systems by at least a factor of 8 while the strength of Al2O3 components increases by a factor of ∼24 (0.3 to 7.6 MPa). Addition of the binder improves the toughness of the ceramic bodies by an order of magnitude with SiO2 representing the largest relative increase (2.8 × 10−3 to 4.4 × 10−2 MPa·m1/2). The mechanical properties are dictated by two binding mechanisms: binder adsorption and mechanical interlocking. High green strengths result from adsorption of the binder onto the ceramic surface whereas toughness is enhanced by poor adhesion of the binder to the ceramic surface.  相似文献   

11.
The inhibition effect of three organic additives on the precipitation and polymorphism of CaCO3 deposited on gold surfaces was investigated using electrochemical and microscopic techniques. Additives, two polyacrylic acid (PAA) polymers with different molecular weights (Mw 2100, Mw 30,000), and 1,2,4,5‐benzenetetracarboxylic acid (BTCA), were either added to the solution before or during deposition. In the presence of 100 ppm of one of the three additives in solution, almost no scale was observed on the surface for at least 24 hours. In the presence of lower concentrations of PAA Mw 2100, only distorted calcite crystals were obtained while with PAA Mw 30,000 the polymorph was spherical vaterite. A mixture of calcite and vaterite was observed with the BTCA additive. Addition of the polymers inhibits further nucleation and growth even if added after partial deposition of CaCO3 while BTCA has no effect once nucleation has started. The results indicate that the inhibit ion effect of the PAA polymers is due to adsorption on the electrode surface while the effect of BTCA is related to chelation of calcium ions in solution.  相似文献   

12.
聚丙烯酸改性凹土对Pb2+、Ni2+和Cr3+的选择性吸附   总被引:1,自引:0,他引:1       下载免费PDF全文
通过凹土的表面功能化开发高性能低成本的吸附材料,采用溶液聚合法在其表面接枝聚丙烯酸,制备出聚丙烯酸/凹土吸附材料(PAA/ATP),系统考察了PAA/ATP对Pb2+、Ni2+和Cr3+三元混合体系的吸附性能。结果表明:PAA/ATP复合吸附材料的有机物接枝率为14.1%,其结构中出现聚丙烯酸的特征官能团;PAA/ATP吸附Pb2+的动力学符合拟二级动力学,即化学吸附是速率控制步骤,说明PAA/ATP对Pb2+的吸附是一个有化学作用的过程,吸附过程与Pb2+和吸附剂PAA/ATP表面官能团之间的电子转移或电子共用有关;PAA/ATP对Pb2+的吸附符合Langmuir吸附等温模型;PAA/ATP对Pb2+、Ni2+和Cr3+的竞争吸附能力依次为Pb2+ > Cr3+ > Ni2+,即对Pb2+具有较好的选择性吸附。  相似文献   

13.
Investigation of the potential use of nanofibers to reinforce composites has gained significance in many applications. In this article, the nanofiber mats of poly(acrylic acid) (PAA) and styrene–butadiene–styrene (SBS) triblock copolymer with composites structure were interweaved by double needle electrospinning process. The multiple nanofiber mats were added to conventional water‐swellable rubber (WSR). Improved mechanical and physical properties of WSR were obtained. Enhancement of the swellability of WSR + PAA/SBS nanofiber mats was derived from the PAA constituent absorbing water from the surface into the bulk and introducing random internal water channels between discontinuous superabsorbent polymers. The role of SBS nanofibers in the composite of WSR + PAA/SBS nanofiber mats was more related to the mechanical properties, where the breaking force of the composite increased to twice that of the conventional WSR. Interestingly, after immersion of the WSR + PAA/SBS nanofiber mats in water for 1 week, there was only a slight decrease in their mechanical properties of less than 5% compared to the dry state. The mechanisms and effects of the nanofiber mats in enhancing the mechanical and water swelling properties of WSR are also discussed. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44213.  相似文献   

14.
A novel hierarchically imprinted cross-linked poly(acrylamide-co-ethylene glycol dimethacrylate) using a double-imprinting approach for the Cu2+ selective separation from aqueous medium was prepared. In the imprinting process, both Cu2+ ions and surfactant micelles (cetyltrimethylammonium bromide – CTAB) were employed as templates. The hierarchically imprinted organic polymer named (IIP-CTAB), single-imprinted (IIP-no CTAB) and non-imprinted (NIP-CTAB and NIP-no CTAB) polymers were characterized by SEM, FTIR, TG, elemental analysis and textural data from BET (Brunauer–Emmett–Teller) and BJH (Barrett–Joyner–Halenda). Compared to these materials, IIP-CTAB showed higher selectivity, specific surface area and adsorption capacity toward Cu2+ ions. Good selectivity for Cu2+ was obtained for the Cu2+/Cd2+, Cu2+/Zn2+ and Cu2+/Co2+ systems when IIP-CTAB was compared to the single-imprinted (IIP-no CTAB) and non double-imprinted polymer (NIP-CTAB), thereby confirming the improvement in the polymer selectivity due to double-imprinting effect. For adsorption kinetic data, the best fit was provided with the pseudo-second-order model for the four materials, thereby indicating the chemical nature of the Cu2+ adsorption process. Cu2+ adsorption under equilibrium was found to follow dual-site Langmuir–Freundlich model isotherm, thus suggesting the existence of adsorption sites with low and high binding energy on the adsorbent surface. From column experiments 600 adsorption–desorption cycles using 1.8 mol L−1 HNO3 as eluent confirmed the great recoverability of adsorbent. The synthesis approach here investigated has been found to be very attractive for the designing of organic ion imprinted polymer and can be expanded to the other polymers to improve performance of ion imprinted polymers in the field of solid phase extraction.  相似文献   

15.
Size-controlled spherical silver nanoparticles (Ag NPs) can be simply prepared by autoclaving mixtures of glass powder containing silver with glucose. Moreover, chitins with varying degrees of deacetylation (DDAc < 30%) and chitosan powders and sheets (DDAc > 75%) with varying surface structure properties have been evaluated as Ag NP carriers. Chitin/chitosan-Ag NP composites in powder or sheet form were prepared by mixing Ag NP suspensions with each of the chitin/chitosan-based material at pH 7.3, leading to homogenous dispersion and stable adsorption of Ag NPs onto chitin carriers with nanoscale fiber-like surface structures, and chitosan carriers with nanoscale porous surface structures. Although these chitins exhibited mild antiviral, bactericidal, and antifungal activities, chitin powders with flat/smooth film-like surface structures had limited antimicrobial activities and Ag NP adsorption. The antimicrobial activities of chitin/chitosan-Ag NP composites increased with increasing amounts of adsorbed Ag NPs, suggesting that the surface structures of chitin/chitosan carriers strongly influence adsorption of Ag NPs and antimicrobial activities. These observations indicate that chitin/chitosan-Ag NPs with nanoscale surface structures have potential as antimicrobial biomaterials and anti-infectious wound dressings.  相似文献   

16.
Starting from the bactericidal properties of functionalized polysulfone (PSFQ) and due to its excellent biocompatibility, biodegradability, and performance in various field, cellulose acetate phthalate (CAP) and polyvinyl alcohol (PVA), as well as their blends (PSFQ/CAP and PSFQ/PVA), have been tested to evaluate their applicative potential in the biomedical field. In this context, because the polymer processing starts from the solution phase, in the first step, the rheological properties were followed in order to assess and control the structural parameters. The surface chemistry analysis, surface properties, and antimicrobial activity of the obtained materials were investigated in order to understand the relationship between the polymers’ structure–surface properties and organization form of materials (fibers and/or films), as important indicators for their future applications. Using the appropriate organization form of the polymers, the surface morphology and performance, including wettability and water permeation, were improved and controlled—these being the desired and needed properties for applications in the biomedical field. Additionally, after antimicrobial activity testing against different bacteria strains, the control of the inhibition mechanism for the analyzed microorganisms was highlighted, making it possible to choose the most efficient polymers/blends and, consequently, the efficiency as biomaterials in targeted applications.  相似文献   

17.
We obtained a reversible emulsion system induced by bentonite solid particles and surfactant Cetyltrimethylammonium bromide (CTAB, whose critical micelle concentration (CMC) value is 9.21 × 10−4 mol L−1). In this study, the zeta potential and contact angle were used to characterize surface wettability of bentonite solid particles in the process of phase transmission behavior. The adsorption amount was calculated at different CTAB concentrations, and then the adsorption isotherm of surfactant CTAB at bentonite solid particles was also studied to confirm the adsorption behavior and adsorption layer structure. The electrical conductivity and microscopic analysis were employed to characterize the phase inversion behavior of emulsion. The results show that the wettability of bentonite particles can be reversed by changing the CTAB concentration, and then the two phase transition behavior of bentonite emulsion can be induced. Additionally, the surfactant CTAB can be used in oil-based drilling fluid systems for the inversion of the emulsion type. The research on the performance of the reversible emulsion oil-based drilling fluid system shows that it has a good thermal stability and a small amount of fluid loss, and successfully reduces the damage of the traditional oil-based drilling fluids on oil well completion.  相似文献   

18.
Polyacrylic acid (PAA) is one of the most exciting hydrophilic polymers for water control and conservation; however, it suffers from poor mechanical properties during the agricultural applications. For that purpose a series of PAA-based multiwalled carbon nanotubes (MWCNTs) membranes have synthesized via a grafting process of MWCNTs using chitosan (CS) polymer as a binder. The fabricated membranes have spectroscopically characterized by different techniques to confirm the composite structure. The MWCNTs content into the PAA membranes has played a pronounced effect on water absorptivity, swelling behavior, and mechanical properties. PAA membrane has showed a fourfold increase in yield-stress by the addition of 3 wt% PAA/CS/MWCNTs, while preserving a 91% of water absorptivity of PAA membrane. The soil applications of the PAA/CS/MWCNTs membranes have showed remarkable improvements in soil moisture content compared to the PAA membrane. This study provides a promising pathway for future field applications, especially in arid lands.  相似文献   

19.
The adsorption and aggregation behaviors of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on a hydrophobic graphite surface were examined using a novel molecular dynamics (MD) simulation with the periodic-shell boundary condition (PSBC). Differences in the adsorption behavior of SDS and CTAB molecules were clearly shown on the hydrophobic surface. Unexpectedly, the SDS molecules approached the graphite surface with their hydrophilic head groups. This unexpected approach mode was thought to be due to the aqueous layer on the graphite surface. The hydrophobic moiety of SDS molecules repeatedly adsorbed and desorbed on the graphite surface. In addition, SDS molecules kept moving on the graphite surface; thus, they did not form a stable adsorption layer. In contrast to SDS, the hydrophobic moiety of CTAB molecules approached the graphite surface at the primary step of adsorption. The hydrophobic moieties of CTAB molecules came close to each other, whereas the hydrophilic groups separated from one another. This result suggests that the CTAB molecules form molecular assemblies with a curved structure. The simulation results were consistent with the experimental observations. A clear difference between the adsorption behavior of SDS and CTAB molecules was revealed by MD simulations with PSBC.  相似文献   

20.
Mesoporous silica nanospheres with radially oriented channels have been obtained by adjusting the interaction between cetyltrimethyl ammonium bromide (CTAB) and protic ionic liquid (tripropylamine acetate) through changing the PIL content. The properties of the samples were characterized by N2 adsorption/desorption techniques, scanning electron microscope and transmission electron microscopy. The radially oriented mesochannels, wrinkled surface morphology and particle sizes of the obtained samples were varied with different mass ratios of CTAB to PIL. Compared with silica spheres prepared without PIL, the radial mesochannels slightly bent and degenerated, meanwhile, the particle sizes were decreased from 550 to 350 nm accordingly. Moreover, the formation mechanism of the silica spheres with radially oriented channels and hierarchical porous structure which based on the interaction between PIL and CTAB was tentatively elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号