首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background  

Recent research has indicated that short term administration of glycine propionyl-L-carnitine (GPLC) significantly elevates levels of nitric oxide metabolites at rest and in response to reactive hyperaemia. However, no scientific evidence exists that suggests such supplementation enhances exercise performance in healthy, trained individuals. The purpose of this study was to examine the effects of GPLC on the performance of repeated high intensity stationary cycle sprints with limited recovery periods in resistance trained male subjects.  相似文献   

2.
Nitric oxide is a gaseous messenger involved in neuronal differentiation, development and synaptogenesis, in addition to many other physiological functions. Therefore, it is imperative to maintain an optimal nitric oxide concentration to ensure its biochemical function. A sustained nitric oxide releasing scaffold, which supports neuronal cell differentiation, as determined by morphometric analysis of neurite outgrowth, is described. Moreover, the effect of nitric oxide on the neuroblastoma cell line was also confirmed by immunofluorescent analysis of neuronal nuclear protein (NeuN), specific neuronal marker and neurofilament (NF) protein, which revealed a significant increase in their expression levels, in comparison with undifferentiated cells.  相似文献   

3.
Preeclampsia is a devastating, multisystem disorder of pregnancy. It has no cure except delivery, which if premature can impart significant neonatal morbidity. Efforts to repurpose pregnancy-safe therapeutics for the treatment of preeclampsia have led to the assessment of the proton pump inhibitor, esomeprazole. Preclinically, esomeprazole reduced placental secretion of anti-angiogenic sFlt-1, improved endothelial dysfunction, promoted vasorelaxation, and reduced maternal hypertension in a mouse model. Our understanding of the precise mechanisms through which esomeprazole works to reduce endothelial dysfunction and enhance vasoreactivity is limited. Evidence from earlier studies suggested esomeprazole might work via the nitric oxide pathway, upregulating endothelial nitric oxide synthase (eNOS). Here, we investigated the effect of esomeprazole in a mouse model of L-NAME-induced hypertension (decreased eNOS activity). We further antagonised the model by addition of diet-induced obesity, which is relevant to both preeclampsia and the nitric oxide pathway. Esomeprazole did not decrease blood pressure in this model, nor were there any alterations in vasoreactivity or changes in foetal outcomes in lean mice. We observed similar findings in the obese mouse cohort, except esomeprazole treatment enhanced ex vivo acetylcholine-induced vasorelaxation. As acetylcholine induces nitric oxide production, these findings hint at a function for esomeprazole in the nitric oxide pathway.  相似文献   

4.
Anti-angiogenesis treatment has been a promising new form of cancer therapy. Endothelial cells are critical for vascular homeostasis and play important roles in angiogenesis, vascular and tissue remodeling. Vasostatin, the 180 amino acid N-terminal fragment of the calreticulin protein, is reported to be a potent endogenous inhibitor of angiogenesis, suppressing tumor growth. However, the mechanism of these effects has not been sufficiently investigated. This study was performed to investigate the possible mechanism of vasostatin effects on primary cultured human umbilical vein endothelial cells (HUVEC). We found that vasostatin could inhibit the cell viability of HUVEC and induce cell apoptosis through mitochondrial pathways via activation of caspase-3 under oxygen deprivation conditions. Meanwhile, vasostatin also inhibited vascular endothelial growth factor-induced proliferation and tube formation of HUVEC. The possible mechanism of vasostatin-inhibited proliferation of HUVEC could be through down-regulation of endothelial nitric oxide synthase. These findings suggest that vasostatin could regulate endothelial cell function and might be used in anti-angiogenesis treatment.  相似文献   

5.
Heme oxygenase (HO) has both beneficial and detrimental effects via its metabolites, including carbon monoxide (CO), biliverdin or bilirubin, and ferrous iron. HO-1 is an inducible form of HO that is upregulated by oxidative stress, nitric oxide, CO, and hypoxia, whereas HO-2 is a constitutive form that regulates vascular tone and homeostasis. In brains injured by trauma, ischemia-reperfusion, or Alzheimer’s disease (AD), the long-term expression of HO-1 can be detected, which can lead to cytotoxic ferroptosis via iron accumulation. In contrast, the transient induction of HO-1 in the peri-injured region may have regenerative potential (e.g., angiogenesis, neurogenesis, and mitochondrial biogenesis) and neurovascular protective effects through the CO-mediated signaling pathway, the antioxidant properties of bilirubin, and the iron-mediated ferritin synthesis. In this review, we discuss the dual roles of HO-1 and its metabolites in various neurovascular diseases, including age-related macular degeneration, ischemia-reperfusion injury, traumatic brain injury, Gilbert’s syndrome, and AD.  相似文献   

6.
The last few decades have witnessed an increased life expectancy of patients suffering with systemic rheumatic diseases, mainly due to improved management, advanced therapies and preventative measures. However, autoimmune disorders are associated with significantly enhanced cardiovascular morbidity and mortality not fully explained by traditional cardiovascular disease (CVD) risk factors. It has been suggested that interactions between high-grade systemic inflammation and the vasculature lead to endothelial dysfunction and atherosclerosis, which may account for the excess risk for CVD events in this population. Diminished nitric oxide synthesis—due to down regulation of endothelial nitric oxide synthase—appears to play a prominent role in the imbalance between vasoactive factors, the consequent impairment of the endothelial hemostasis and the early development of atherosclerosis. Asymmetric dimethylarginine (ADMA) is one of the most potent endogenous inhibitors of the three isoforms of nitric oxide synthase and it is a newly discovered risk factor in the setting of diseases associated with endothelial dysfunction and adverse cardiovascular events. In the context of systemic inflammatory disorders there is increasing evidence that ADMA contributes to the vascular changes and to endothelial cell abnormalities, as several studies have revealed derangement of nitric oxide/ADMA pathway in different disease subsets. In this article we discuss the role of endothelial dysfunction in patients with rheumatic diseases, with a specific focus on the nitric oxide/ADMA system and we provide an overview on the literature pertaining to ADMA as a surrogate marker of subclinical vascular disease.  相似文献   

7.
Background: Calcific aortic valve disease (CAVD) is a rapidly growing global health problem with an estimated 12.6 million cases globally in 2017 and a 112% increase of deaths since 1990 due to aging and population growth. CAVD may develop into aortic stenosis (AS) by progressive narrowing of the aortic valve. AS is underdiagnosed, and if treatment by aortic valve replacement (AVR) is delayed, this leads to poor recovery of cardiac function, absence of symptomatic improvement and marked increase of mortality. Considering the current limitations to define the stage of AS-induced cardiac remodeling, there is need for a novel method to aid in the diagnosis of AS and timing of intervention, which may be found in metabolomics profiling of patients. Methods: Serum samples of nine healthy controls and 10 AS patients before and after AVR were analyzed by untargeted mass spectrometry. Multivariate modeling was performed to determine a metabolic profile of 30 serum metabolites which distinguishes AS patients from controls. Human cardiac microvascular endothelial cells (CMECs) were incubated with serum of the AS patients and then stained for ICAM-1 with Western Blot to analyze the effect of AS patient serum on endothelial cell activation. Results: The top 30 metabolic profile strongly distinguishes AS patients from healthy controls and includes 17 metabolites related to nitric oxide metabolism and 12 metabolites related to inflammation, in line with the known pathomechanism for calcific aortic valve disease. Nine metabolites correlate strongly with left ventricular mass, of which three show reversal back to control values after AVR. Western blot analysis of CMECs incubated with AS patient sera shows a significant reduction (14%) in ICAM-1 in AS samples taken after AVR compared to AS patient sera before AVR. Conclusion: Our study defined a top 30 metabolic profile with biological and clinical relevance, which may be used as blood biomarker to identify AS patients in need of cardiac surgery. Future studies are warranted in patients with mild-to-moderate AS to determine if these metabolites reflect disease severity and can be used to identify AS patients in need of cardiac surgery.  相似文献   

8.
The treatment of type 2 diabetes patients with bromocriptine-QR, a unique, quick release micronized formulation of bromocriptine, improves glycemic control and reduces adverse cardiovascular events. While the improvement of glycemic control is largely the result of improved postprandial hepatic glucose metabolism and insulin action, the mechanisms underlying the drug’s cardioprotective effects are less well defined. Bromocriptine is a sympatholytic dopamine agonist and reduces the elevated sympathetic tone, characteristic of metabolic syndrome and type 2 diabetes, which potentiates elevations of vascular oxidative/nitrosative stress, known to precipitate cardiovascular disease. Therefore, this study investigated the impact of bromocriptine treatment upon biomarkers of vascular oxidative/nitrosative stress (including the pro-oxidative/nitrosative stress enzymes of NADPH oxidase 4, inducible nitric oxide (iNOS), uncoupled endothelial nitric oxide synthase (eNOS), the pro-inflammatory/pro-oxidative marker GTP cyclohydrolase 1 (GTPCH 1), and the pro-vascular health enzyme, soluble guanylate cyclase (sGC) as well as the plasma level of thiobarbituric acid reactive substances (TBARS), a circulating marker of systemic oxidative stress), in hypertensive SHR rats held on a high fat diet to induce metabolic syndrome. Inasmuch as the central nervous system (CNS) dopaminergic activities both regulate and are regulated by CNS circadian pacemaker circuitry, this study also investigated the time-of-day-dependent effects of bromocriptine treatment (10 mg/kg/day at either 13 or 19 h after the onset of light (at the natural waking time or late during the activity period, respectively) among animals held on 14 h daily photoperiods for 16 days upon such vascular biomarkers of vascular redox state, several metabolic syndrome parameters, and mediobasal hypothalamic (MBH) mRNA expression levels of neuropeptides neuropeptide Y (NPY) and agouti-related protein (AgRP) which regulate the peripheral fuel metabolism and of mRNA expression of other MBH glial and neuronal cell genes that support such metabolism regulating neurons in this model system. Such bromocriptine treatment at ZT 13 improved (reduced) biomarkers of vascular oxidative/nitrosative stress including plasma TBARS level, aortic NADPH oxidase 4, iNOS and GTPCH 1 levels, and improved other markers of coupled eNOS function, including increased sGC protein level, relative to controls. However, bromocriptine treatment at ZT 19 produced no improvement in either coupled eNOS function or sGC protein level. Moreover, such ZT 13 bromocriptine treatment reduced several metabolic syndrome parameters including fasting insulin and leptin levels, as well as elevated systolic and diastolic blood pressure, insulin resistance, body fat store levels and liver fat content, however, such effects of ZT 19 bromocriptine treatment were largely absent versus control. Finally, ZT 13 bromocriptine treatment reduced MBH NPY and AgRP mRNA levels and mRNA levels of several MBH glial cell/neuronal genes that code for neuronal support/plasticity proteins (suggesting a shift in neuronal structure/function to a new metabolic control state) while ZT 19 treatment reduced only AgRP, not NPY, and was with very little effect on such MBH glial cell genes expression. These findings indicate that circadian-timed bromocriptine administration at the natural circadian peak of CNS dopaminergic activity (that is diminished in insulin resistant states), but not outside this daily time window when such CNS dopaminergic activity is naturally low, produces widespread improvements in biomarkers of vascular oxidative stress that are associated with the amelioration of metabolic syndrome and reductions in MBH neuropeptides and gene expressions known to facilitate metabolic syndrome. These results of such circadian-timed bromocriptine treatment upon vascular pathology provide potential mechanisms for the observed marked reductions in adverse cardiovascular events with circadian-timed bromocriptine-QR therapy (similarly timed to the onset of daily waking as in this study) of type 2 diabetes subjects and warrant further investigations into related mechanisms and the potential application of such intervention to prediabetes and metabolic syndrome patients as well.  相似文献   

9.
Sepsis is a sustained systemic inflammatory condition involving multiple organ failures caused by dysregulated immune response to infections. Sepsis induces substantial changes in energy demands at the cellular level leading to metabolic reprogramming in immune cells and stromal cells. Although sepsis-associated organ dysfunction and mortality have been partly attributed to the initial acute hyperinflammation and immunosuppression precipitated by a dysfunction in innate and adaptive immune responses, the late mortality due to metabolic dysfunction and immune paralysis currently represent the major problem in clinics. It is becoming increasingly recognized that intertissue and/or intercellular metabolic crosstalk via endocrine factors modulates maintenance of homeostasis, and pathological events in sepsis and other inflammatory diseases. Exosomes have emerged as a novel means of intercellular communication in the regulation of cellular metabolism, owing to their capacity to transfer bioactive payloads such as proteins, lipids, and nucleic acids to their target cells. Recent evidence demonstrates transfer of intact metabolic intermediates from cancer-associated fibroblasts via exosomes to modify metabolic signaling in recipient cells and promote cancer progression. Here, we review the metabolic regulation of endothelial cells and immune cells in sepsis and highlight the role of exosomes as mediators of cellular metabolic signaling in sepsis.  相似文献   

10.
The present study attempted to clarify the antihypertensive effect and its mechanism when alpha-linolenic acid (ALA) is administered orally. For this purpose, 1 mL of flaxseed oil, which is rich in ALA, and high oleic safflower oil was administered orally to spontaneously hypertensive rats (SHR) of a control and an ALA group on days 1 and 5. Systolic blood pressure was measured on day 1, and blood and liver were collected on day 5. Four hours after the oral administration on day 1, systolic blood pressure of the ALA group was lower than that of the control group. Levels of plasma vasodilators, such as prostaglandin I(2) metabolite, nitric oxide metabolites, and bradykinin, in the ALA group were significantly higher than those in the control group, but levels of vasoconstrictors, such as angiotensin II and thromboxane A(2) metabolite, did not differ significantly. It is known that bradykinin induces prostaglandin I(2) and nitric oxide. The present study shows that ALA reduced the systolic blood pressure of SHR, and its mechanism may be related to increases of prostaglandin I(2) and nitric oxide through bradykinin stimulation.  相似文献   

11.
Trimethylamine N-oxide (TMAO) is a diet derived compound directly introduced through foodstuff, or endogenously synthesized from its precursors, primarily choline, L-carnitine, and ergothioneine. New evidence outlines high TMAO plasma concentrations in patients with overt cardiovascular disease, but its direct role in pathological development is still controversial. The purpose of the study was to evaluate the role of TMAO in affecting key intracellular factors involved in endothelial dysfunction development, such as reactive oxygen species, mitochondrial health, calcium balance, and nitric oxide release using bovine aortic endothelial cells (BAE-1). Cell viability and oxidative stress indicators were monitored after acute and prolonged TMAO treatment. The role of TMAO in interfering with the physiological purinergic vasodilatory mechanism after ATP stimulation was defined through measurements of the rise of intracellular calcium, nitric oxide release, and eNOS phosphorylation at Ser1179 (eNOSSer1179). TMAO was not cytotoxic for BAE-1 and it did not induce the rise of reactive oxygen species and impairment of mitochondrial membrane potential, either in the basal condition or in the presence of a stressor. In contrast, TMAO modified the purinergic response affecting intracellular ATP-induced calcium increase, nitric oxide release, and eNOSSer1179. Results obtained suggest a possible implication of TMAO in impairing the endothelial-dependent vasodilatory mechanism.  相似文献   

12.
Lipotoxicity is a metabolic condition resulting from the accumulation of free fatty acids in non-adipose tissues which involves a series of pathological responses triggered after chronic exposure to high levels of fatty acids, severely detrimental to cellular homeostasis and viability. In brain, lipotoxicity affects both neurons and other cell types, notably astrocytes, leading to neurodegenerative processes, such as Alzheimer (AD) and Parkinson diseases (PD). In this study, we performed for the first time, a whole lipidomic characterization of Normal Human Astrocytes cultures exposed to toxic concentrations of palmitic acid and the protective compound tibolone, to establish and identify the set of potential metabolites that are modulated under these experimental treatments. The study covered 3843 features involved in the exo- and endo-metabolome extracts obtained from astrocytes with the mentioned treatments. Through multivariate statistical analysis such as PCA (principal component analysis), partial least squares (PLS-DA), clustering analysis, and machine learning enrichment analysis, it was possible to determine the specific metabolites that were affected by palmitic acid insult, such as phosphoethanolamines, phosphoserines phosphocholines and glycerophosphocholines, with their respective metabolic pathways impact. Moreover, our results suggest the importance of tibolone in the generation of neuroprotective metabolites by astrocytes and may be relevant to the development of neurodegenerative processes.  相似文献   

13.
Melanoma is the most aggressive type of skin cancer due to its high capability of developing metastasis and acquiring chemoresistance. Altered redox homeostasis induced by increased reactive oxygen species is associated with melanomagenesis through modulation of redox signaling pathways. Dysfunctional endothelial nitric oxide synthase (eNOS) produces superoxide anion (O2−•) and contributes to the establishment of a pro-oxidant environment in melanoma. Although decreased tetrahydrobiopterin (BH4) bioavailability is associated with eNOS uncoupling in endothelial and human melanoma cells, in the present work we show that eNOS uncoupling in metastatic melanoma cells expressing the genes from de novo biopterin synthesis pathway Gch1, Pts, and Spr, and high BH4 concentration and BH4:BH2 ratio. Western blot analysis showed increased expression of Nos3, altering the stoichiometry balance between eNOS and BH4, contributing to NOS uncoupling. Both treatment with L-sepiapterin and eNOS downregulation induced increased nitric oxide (NO) and decreased O2 levels, triggering NOS coupling and reducing cell growth and resistance to anoikis and dacarbazine chemotherapy. Moreover, restoration of eNOS activity impaired tumor growth in vivo. Finally, NOS3 expression was found to be increased in human metastatic melanoma samples compared with the primary site. eNOS dysfunction may be an important mechanism supporting metastatic melanoma growth and hence a potential target for therapy.  相似文献   

14.
Caveolae are cholesterol and glycosphingolipids-enriched microdomains of plasma membranes. Caveolin-1 represents the major structural protein of caveolae, that also contain receptors and molecules involved in signal transduction pathways. Caveolae are particularly abundant in endothelial cells, where they play important physiological and pathological roles in regulating endothelial cell functions. Several molecules with relevant functions in endothelial cells are localized in caveolae, including endothelial nitric oxide synthase (eNOS), which regulates the production of nitric oxide, and scavenger receptor class B type I (SR-BI), which plays a key role in the induction of eNOS activity mediated by high density lipoproteins (HDL). HDL have several atheroprotective functions, including a positive effect on endothelial cells, as it is a potent agonist of eNOS through the interaction with SR-BI. However, the oxidative modification of HDL may impair their protective role. In the present study we evaluated the effect of 15-lipoxygenase-mediated modification of HDL3 on the expression and/or activity of some proteins localized in endothelial caveolae and involved in the nitric oxide generation pathway. We found that after modification, HDL3 failed to activate eNOS and to induce NO production, due to both a reduced ability to interact with its own receptor SR-BI and to a reduced expression of SR-BI in cells exposed to modified HDL. These findings suggest that modification of HDL may reduce its endothelial-protective role also by interfering with vasodilatory function of HDL.  相似文献   

15.
Messner MC  Albert CJ  Ford DA 《Lipids》2008,43(7):581-588
2-Chlorohexadecanal (2-ClHDA), a 16-carbon chain chlorinated fatty aldehyde that is produced by reactive chlorinating species attack of plasmalogens, is elevated in atherosclerotic plaques, infarcted myocardium, and activated leukocytes. We tested the hypothesis that 2-ClHDA and its metabolites, 2-chlorohexadecanoic acid (2-ClHA) and 2-chlorohexadecanol (2-ClHOH), induce COX-2 expression in human coronary artery endothelial cells (HCAEC). COX-2 protein expression increased in response to 2-ClHDA treatments at 8 and 20 h. 2-ClHA also increased COX-2 expression following an 8 h treatment. Quantitative PCR showed that 2-ClHDA treatment increased COX-2 mRNA over 8 h, while 2-ClHA treatment led to a modest increase by 1 h and those levels remained constant over 8 h. 2-ClHDA led to a significant increase in 6-keto-PGF(1alpha) release (a measure of PGI(2) release) by HCAEC. These data suggest that 2-ClHDA and its metabolite 2-ClHA, which are produced during leukocyte activation, may alter vascular endothelial cell function by upregulation of COX-2 expression.  相似文献   

16.
Clinical data indicate that low circulating l-homoarginine (HArg) concentrations are associated with cardiovascular (CV) disease, CV mortality, and all-cause mortality. A high number of LC-based analytical methods for the quantification of HArg, in combination with the l-arginine (Arg)-related pathway metabolites, have been reported. However, these methods usually consider a limited panel of analytes. Thus, in order to achieve a comprehensive picture of the Arg metabolism, we described an improved targeted metabolomic approach based on a multiple reaction monitoring (MRM) mass spectrometry method for the simultaneous quantification of the Arg/nitric oxide (NO) pathway metabolites. This methodology was then employed to quantify the plasma concentrations of these analytes in a cohort of individuals with different grades/types of coronary artery disease (CAD) in order to increase knowledge about the role of HArg and its associated metabolites in the CV field. Our results showed that the MRM method here implemented is suitable for the simultaneous assessment of a wide panel of amino acids involved in the Arg/NO metabolic pathway in plasma samples from patients with CV disease. Further, our findings highlighted an impairment of the Arg/NO metabolic pathway, and suggest a sex-dependent regulation of this metabolic route.  相似文献   

17.
Inflammation is an adaptive response to both external and internal stimuli including infection, trauma, surgery, ischemia-reperfusion, or malignancy. A number of studies indicate that physical activity is an effective means of reducing acute systemic and low-level inflammation occurring in different pathological conditions and in the recovery phase after disease. As a proof-of-principle, we hypothesized that low-intensity workout performed under modified oxygen supply would elicit a “metabolic exercise” inducing a hormetic response, increasing the metabolic load and oxidative stress with the same overall effect expected after a higher intensity or charge exercise. Herein, we report the effect of a 5-week low-intensity, non-training, exercise program in a group of young healthy subjects in combination with the exposure to hyperoxia (30% and 100% pO2, respectively) or light hypoxia (15% pO2) during workout sessions on several inflammation and oxidative stress parameters, namely hemoglobin (Hb), redox state, nitric oxide metabolite (NOx), inducible nitric oxide synthase (iNOS), inflammatory cytokine expression (TNF-α, interleukin (IL)-6, IL-10), and renal functional biomarkers (creatinine, neopterin, and urates). We confirmed our previous reports demonstrating that intermittent hyperoxia induces the normobaric oxygen paradox (NOP), a response overlapping the exposure to hypoxia. Our data also suggest that the administration of modified air composition is an expedient complement to a light physical exercise program to achieve a significant modulation of inflammatory and immune parameters, including cytokines expression, iNOS activity, and oxidative stress parameters. This strategy can be of pivotal interest in all those conditions characterized by the inability to achieve a sufficient workload intensity, such as severe cardiovascular alterations and articular injuries failing to effectively gain a significant improvement of physical capacity.  相似文献   

18.
Due to the excess energy intake, which is a result of a high fat and high carbohydrate diet, dysfunction of energy balance leads to metabolic disorders such as obesity and type II diabetes mellitus (T2DM). Since obesity can be a risk factor for various diseases, including T2DM, hypertension, hyperlipidemia, and metabolic syndrome, novel prevention and treatment are expected. Moreover, host diseases linked to metabolic disorders are associated with changes in gut microbiota profile. Gut microbiota is affected by diet, and nutrients are used as substrates by gut microbiota for produced metabolites, such as short-chain and long-chain fatty acids, that may modulate host energy homeostasis. These free fatty acids are not only essential energy sources but also signaling molecules via G-protein coupled receptors (GPCRs). Some GPCRs are critical for metabolic functions, such as hormone secretion and immune function in various types of cells and tissues and contribute to energy homeostasis. The current studies have shown that GPCRs for gut microbial metabolites improved host energy homeostasis and systemic metabolic disorders. Here, we will review the association between diet, gut microbiota, and host energy homeostasis.  相似文献   

19.
l-Arginine (Arg) is oxidized to l-citrulline and nitric oxide (NO) by the action of endothelial nitric oxide synthase (NOS). In contrast, protein-incorporated Arg residues can be methylated with subsequent proteolysis giving rise to methylarginine compounds, such as asymmetric dimethylarginine (ADMA) that competes with Arg for binding to NOS. Most ADMA is degraded by dimethylarginine dimethyaminohydrolase (DDAH), distributed widely throughout the body and regulates ADMA levels and, therefore, NO synthesis. In recent years, several studies have suggested that increased ADMA levels are a marker of atherosclerotic change, and can be used to assess cardiovascular risk, consistent with ADMA being predominantly absorbed by endothelial cells. NO is an important messenger molecule involved in numerous biological processes, and its activity is essential to understand both pathogenic and therapeutic mechanisms in kidney disease and renal transplantation. NO production is reduced in renal patients because of their elevated ADMA levels with associated reduced DDAH activity. These factors contribute to endothelial dysfunction, oxidative stress and the progression of renal damage, but there are treatments that may effectively reduce ADMA levels in patients with kidney disease. Available data on ADMA levels in controls and renal patients, both in adults and children, also are summarized in this review.  相似文献   

20.
Cancer development is associated with abnormal proliferation, genetic instability, cell death resistance, metabolic reprogramming, immunity evasion, and metastasis. These alterations are triggered by genetic and epigenetic alterations in genes that control cell homeostasis. Increased reactive oxygen and nitrogen species (ROS, RNS) induced by different enzymes and reactions with distinct molecules contribute to malignant transformation and tumor progression by modifying DNA, proteins, and lipids, altering their activities. Nitric oxide synthase plays a central role in oncogenic signaling modulation and redox landscape. Overexpression of the three NOS isoforms has been found in innumerous types of cancer contributing to tumor growth and development. Although the main function of NOS is the production of nitric oxide (NO), it can be a source of ROS in some pathological conditions. Decreased tetrahydrobiopterin (BH4) cofactor availability is involved in NOS dysfunction, leading to ROS production and reduced levels of NO. The regulation of NOSs by BH4 in cancer is controversial since BH4 has been reported as a pro-tumoral or an antitumoral molecule. Therefore, in this review, the role of BH4 in the control of NOS activity and its involvement in the capabilities acquired along tumor progression of different cancers was described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号