首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Multiple sclerosis (MS) is a debilitating neurodegenerative, highly heterogeneous disease with a variable course. The most common MS subtype is relapsing–remitting (RR), having interchanging periods of worsening and relative stabilization. After a decade, in most RR patients, it alters into the secondary progressive (SP) phase, the most debilitating one with no clear remissions, leading to progressive disability deterioration. Among the greatest challenges for clinicians is understanding disease progression molecular mechanisms, since RR is mainly characterized by inflammatory processes, while in SP, the neurodegeneration prevails. This is especially important because distinguishing RR from the SP subtype early will enable faster implementation of appropriate treatment. Currently, the MS course is not well-correlated with the biomarkers routinely used in clinical practice. Despite many studies, there are still no reliable indicators correlating with the disease stage and its activity degree. Circulating microRNAs (miRNAs) may be considered valuable molecules for the MS diagnosis and, presumably, helpful in predicting disease subtype. MiRNA expression dysregulation is commonly observed in the MS course. Moreover, knowledge of diverse miRNA panel expression between RRMS and SPMS may allow for deterring disability progression through successful treatment. Therefore, in this review, we address the current state of research on differences in miRNA panel expression between the phases.  相似文献   

2.
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS). Its first clinical presentation (clinically isolated syndrome, CIS) is often followed by the development of relapsing–remitting MS (RRMS). The periphery-to-CNS transmission of inflammatory molecules is a major pathophysiological pathway in MS. This could include signalling via extracellular vesicle (EV) microRNAs (miRNAs). In this study, we investigated the serum EV miRNome in CIS and RRMS patients and matched controls, with the aims to identify MS stage-specific differentially expressed miRNAs and investigate their biomarker potential and pathophysiological relevance. miRNA sequencing was conducted on serum EVs from CIS-remission, RRMS-relapse, and viral inflammatory CNS disorder patients, as well as from healthy and hospitalized controls. Differential expression analysis was conducted, followed by predictive power and target-pathway analysis. A moderate number of dysregulated serum EV miRNAs were identified in CIS-remission and RRMS-relapse patients, especially relative to healthy controls. Some of these miRNAs were also differentially expressed between the two MS stages and had biomarker potential for patient-control and CIS–RRMS separations. For the mRNA targets of the RRMS-relapse-specific EV miRNAs, biological processes inherent to MS pathophysiology were identified using in silico analysis. Study findings demonstrate that specific serum EV miRNAs have MS stage-specific biomarker potential and contribute to the identification of potential targets for novel, efficacious therapies.  相似文献   

3.
4.
Despites the fact that T cells are involved in the pathogenesis of osteoarthritis (OA) little is known about the roles of CD8+ T cells in this disease. We investigated the effects of CD8+ T cells and the expression of tissue inhibitor of metalloproteinases 1 (TIMP-1) on joint pathology. Using anterior cruciate ligament-transection (ACLT), OA was induced in mice. The knee joints were histologically assessed for manifestations of OA. The CD8+ T cells from splenocytes and synovium were flow-cytometrically and immunochemically evaluated, respectively. Local expression of TIMP-1, matrix metalloproteinase (MMP)-13, and VEGF were examined. Cartilage degeneration was slower in CD8+ T cell knockout mice than in control mice. CD8+ T cells were activated once OA was initiated and expanded during OA progression. More CD8+ T cells from splenocytes expressed TIMP-1 in ACLT-group mice than in Sham-group mice. The number of TIMP-1-expressing CD8+ T cells in OA mice correlated with the disease severity. TIMP-1 expression in cartilage was co-localized with that of MMP-13 and VEGF. TIMP-1 protein was detected in synovium in which angiogenesis occurred. During the pathogenesis of OA, the expression of TIMP-1, VEGF and MMP-13 accompanying with CD8+ T cells activation were increased. Furthermore, inhibiting the expression of TIMP-1 in joints could retard the progression of OA.  相似文献   

5.
We studied SARS-CoV-2-specific T cell responses in 22 subacute MIS-C children enrolled in 2021 and 2022 using peptide pools derived from SARS-CoV-2 spike or nonspike proteins. CD4+ and CD8+ SARS-CoV-2-specific T cells were detected in 5 subjects, CD4+ T helper (Th) responses alone were detected in 12 subjects, and CD8+ cytotoxic T cell (CTL) responses alone were documented in 1 subject. Notably, a sizeable subpopulation of CD4− CD8− double-negative (DN) T cells out of total CD3+ T cells was observed in MIS-C (median: 14.5%; IQR 8.65–25.3) and recognized SARS-CoV-2 peptides. T cells bearing the Vβ21.3 T cell receptor (TcRs), previously reported as pathogenic in the context of MIS-C, were detected in high frequencies, namely, in 2.8% and 3.9% of the CD4+ and CD8+ T cells, respectively. However, Vβ21.3 CD8+ T cells that responded to SARS-CoV-2 peptides were detected in only a single subject, suggesting recognition of nonviral antigens in the majority of subjects. Subjects studied 6–14 months after MIS-C showed T cell epitope spreading, meaning the activation of T cells that recognize more SARS-CoV-2 peptides following the initial expansion of T cells that see immunodominant epitopes. For example, subjects that did not recognize nonspike proteins in the subacute phase of MIS-C showed good Th response to nonspike peptides, and/or CD8+ T cell responses not appreciable before arose over time and could be detected in the 6–14 months’ follow-up. The magnitude of the Th and CTL responses also increased over time. In summary, patients with MIS-C associated with acute lymphopenia, a classical feature of MIS-C, showed a physiological response to the virus with a prominent role for virus-specific DN T cells.  相似文献   

6.
目的观察1型糖尿病反义肽噬菌体疫苗诱导CD8+T细胞对病理性CD4+T细胞的抑制作用。方法用1型糖尿病反义肽噬菌体疫苗免疫非肥胖型糖尿病(NOD)小鼠,并同时设立噬菌体空载体免疫组和未免疫空白对照组。于初次免疫后第20周,检测各组小鼠血糖;磁珠法分离免疫小鼠CD8+T细胞,并用合成反义肽及IL-2诱导刺激作为效应细胞;分离噬菌体空载体免疫组和空白对照组小鼠CD4+T细胞,用合成正义肽及IL-2诱导刺激作为靶细胞。将效应细胞与靶细胞按不同比例混合,以乳酸脱氢酶(LDH)释放法检测CTL的杀伤活性。结果初次免疫后第20周,1型糖尿病反义肽噬菌体疫苗免疫组小鼠血糖水平保持正常,而另外2组小鼠血糖均高于正常水平。1型糖尿病反义肽噬菌体疫苗免疫组诱导的CD8+T细胞作效应细胞,当效靶比为100∶1时,对噬菌体空载体免疫组CD4+T细胞的杀伤效率最高,达47.95%±11.30%,而噬菌体空载体免疫组诱导的小鼠CD8+T细胞对空白对照组的CD4+T细胞无杀伤作用。结论1型糖尿病反义肽噬菌体疫苗能够诱导CD8+T细胞抑制病理性CD4+T细胞。  相似文献   

7.
8.
We have previously shown that a deficiency of CD1d-restricted invariant natural killer T (iNKT) cells exacerbates dextran sulfate sodium (DSS)-induced colitis in Yeti mice that exhibit IFNγ-mediated hyper-inflammation. Although iNKT cell-deficiency resulted in reduced Foxp3 expression by mesenteric lymph node (MLN) CD4+ T cells in DSS-treated Yeti mice, the cellular mechanisms that regulate Foxp3 expression by CD25+CD4+ T cells during intestinal inflammation remain unclear. We found that Foxp3CD25+CD4+ T cells expressing Th1 and Th17 phenotypic hallmarks preferentially expanded in the MLNs of DSS-treated Yeti/CD1d knockout (KO) mice. Moreover, adoptive transfer of Yeti iNKT cells into iNKT cell-deficient Jα18 KO mice effectively suppressed the expansion of MLN Foxp3CD25+CD4+ T cells during DSS-induced colitis. Interestingly, MLN dendritic cells (DCs) purified from DSS-treated Yeti/CD1d KO mice promoted the differentiation of naive CD4+ T cells into Foxp3CD25+CD4+ T cells rather than regulatory T (Treg) cells, indicating that MLN DCs might mediate Foxp3+CD25+CD4+ T cell expansion in iNKT cell-sufficient Yeti mice. Furthermore, we showed that Foxp3CD25+CD4+ T cells were pathogenic in DSS-treated Yeti/CD1d KO mice. Our result suggests that pro-inflammatory DCs and CD1d-restricted iNKT cells play opposing roles in Foxp3 expression by MLN CD25+CD4+ T cells during IFNγ-mediated intestinal inflammation, with potential therapeutic implications.  相似文献   

9.
Unlike solid-tumor patients, a disappointingly small subset of multiple myeloma (MM) patients treated with checkpoint inhibitors derive clinical benefits, suggesting differential participation of inhibitory receptors involved in the development of T-cell-mediated immunosuppression. In fact, T cells in MM patients have recently been shown to display features of immunosenescence and exhaustion involved in immune response inhibition. Therefore, we aimed to identify the dominant inhibitory pathway in MM patients to achieve its effective control by therapeutic interventions. By flow cytometry, we examined peripheral blood (PB) CD4 T cell characteristics assigned to senescence or exhaustion, considering PD-1, CTLA-4, and BTLA checkpoint expression, as well as secretory effector function, i.e., capacity for IFN-γ and IL-17 secretion. Analyses were performed in a total of 40 active myeloma patients (newly diagnosed and treated) and 20 healthy controls. At the single-cell level, we found a loss of studied checkpoints’ expression on MM CD4 T cells (both effector (Teff) and regulatory (Treg) cells) primarily at diagnosis; the checkpoint deficit in MM relapse was not significant. Nonetheless, PD-1 was the only checkpoint distributed on an increased proportion of T cells in all MM patients irrespective of disease phase, and its expression on CD4 Teff cells correlated with adverse clinical courses. Among patients, the relative defect in secretory effector function of CD4 T cells was more pronounced at myeloma relapse (as seen in declined Th1/Treg and Th17/Treg cell rates). Although the contribution of PD-1 to MM clinical outcomes is suggestive, our study clearly indicated that the inappropriate expression of immune checkpoints (associated with dysfunctionality of CD4 T cells and disease clinical phase) might be responsible for the sub-optimal clinical response to therapeutic checkpoint inhibitors in MM.  相似文献   

10.
Loss of tolerance of the adaptive immune system towards indigenous flora contributes to the development of inflammatory bowel diseases (IBD). Defects in dendritic cell (DC)-mediated innate and adoptive immune responses are conceivable. The aim of this study was to investigate the expression of the inhibitory molecules CD200R1 and their ligand CD200 on DCs, to clarify the role of the DCs in the pathogenesis of IBD. Thirty-seven pediatric IBD patients (23 with Crohn’s disease (CD) and 14 with ulcerative colitis (UC)) with mean age 13.25 ± 2.9 years were included. Fourteen age-matched healthy pediatric volunteers (five males and nine females) served as a control group (HC). The percentage of CD11c+ myeloid dendritic cells (mDCs) and CD123+ plasmacytoid DCs (pDCs) expressing CD200R1 and CD200 were evaluated in peripheral blood using flow cytometry and were correlated with routine biochemical, serological markers, serum levels of cytokines and with the percentages of circulating regulatory T cells (Treg) and CD4+ producing IL-17 (Th17). IBD patients showed a significant decrease in the percentage of pDCs and mDCs expressing CD200R1 compared to that of HC. Patients with UC showed increased expressions of the CD200 molecule on pDCs as compared to HC. DCs expressing CD200R1 were found to be correlated positively with Treg and negatively with TH17 and erythrocyte sedimentation rate (ESR). Our findings suggest that IBD is associated with dysregulation in the CD200R1/CD200 axis and that the decrease in DCs expressing CD200R1 may contribute to the imbalance of Th17 and Treg cells and in the pathogenesis of IBD.  相似文献   

11.
12.
Corneal infections are frequent and potentially vision-threatening diseases, and despite the significance of the immunological response in animal models of microbial keratitis (MK), it remains unclear in humans. The aim of this study was to describe the cytokine profile of tears in patients with MK. Characteristics of ocular lesions such as size of the epithelial defect, stromal infiltration, and hypopyon were analyzed. Immunological evaluation included determination of interleukine (IL)-1β, IL-6, IL-8, IL-10, IL-12 and tumor necrosis factor (TNF)-α in tear samples obtained from infected eyes of 28 patients with MK and compared with their contralateral non-infected eyes. Additionally, frequency of CD4+, CD8+, CD19+ and CD3CD56+ cells was also determined in peripheral blood mononuclear cells in patients with MK, and compared with 48 healthy controls. Non-significant differences were observed in the size of the epithelial defect, stromal infiltration, and hypopyon. Nevertheless, we found an immunological profile apparently related to MK etiology. IL-8 > IL-6 in patients with bacterial keratitis; IL-8 > IL-6 > IL-1β and increased frequency of circulating CD3CD56+ NK cells in patients with gram-negative keratitis; and IL-8 = IL-6 > IL-1β in patients with fungal keratitis. Characterization of tear cytokines from patients with MK could aid our understanding of the immune pathophysiological mechanisms underlying corneal damage in humans.  相似文献   

13.
Non-infectious uveitis (NIU) is a potentially sight-threatening disease. Effector CD4+ T cells, especially interferon-γ-(IFNγ) producing Th1 cells and interleukin-17-(IL-17) producing Th17 cells, are the major immunopathogenic cells, as demonstrated by adoptive transfer of disease in a model of experimental autoimmune uveitis (EAU). CD4+FoxP3+CD25+ regulatory T cells (Tregs) were known to suppress function of effector CD4+ T cells and contribute to resolution of disease. It has been recently reported that some CD4+ T-cell subsets demonstrate shared phenotypes with another CD4+ T-cell subset, offering the potential for dual function. For example, Th17/Th1 (co-expressing IFNγ and IL-17) cells and Th17/Treg (co-expressing IL-17 and FoxP3) cells have been identified in NIU and EAU. In this review, we have investigated the evidence as to whether these ‘plastic CD4+ T cells’ are functionally active in uveitis. We conclude that Th17/Th1 cells are generated locally, are resistant to the immunosuppressive effects of steroids, and contribute to early development of EAU. Th17/Treg cells produce IL-17, not IL-10, and act similar to Th17 cells. These cells were considered pathogenic in uveitis. Future studies are needed to better clarify their function, and in the future, these cell subsets may in need to be taken into consideration for designing treatment strategies for disease.  相似文献   

14.
CD8+ T lymphocytes are a heterogeneous class of cells that play a crucial role in the adaptive immune response against pathogens and cancer. During their lifetime, they acquire cytotoxic functions to ensure the clearance of infected or transformed cells and, in addition, they turn into memory lymphocytes, thus providing a long-term protection. During ageing, the thymic involution causes a reduction of circulating T cells and an enrichment of memory cells, partially explaining the lowering of the response towards novel antigens with implications in vaccine efficacy. Moreover, the persistent stimulation by several antigens throughout life favors the switching of CD8+ T cells towards a senescent phenotype contributing to a low-grade inflammation that is a major component of several ageing-related diseases. In genetically predisposed young people, an immunological stress caused by viral infections (e.g., HIV, CMV, SARS-CoV-2), autoimmune disorders or tumor microenvironment (TME) could mimic the ageing status with the consequent acceleration of T cell senescence. This, in turn, exacerbates the inflamed conditions with dramatic effects on the clinical progression of the disease. A better characterization of the phenotype as well as the functions of senescent CD8+ T cells can be pivotal to prevent age-related diseases, to improve vaccine strategies and, possibly, immunotherapies in autoimmune diseases and cancer.  相似文献   

15.
Background: A keloid is a benign skin tumor that extends beyond the initial injury area, and its pathologic mechanism remains unclear. Method: High-throughput sequencing data were obtained from normal skin tissue of patients with keloids (Group N) and healthy controls (Group C). Important genes were mined by bioinformatics analysis and identified by RT–qPCR, Western blotting, immunohistochemistry and immunofluorescence assays. The CIBERSORT algorithm was used to convert gene expression information into immune cell information. Flow cytometry was used to verify the key immune cells. Fluorescence-activated cell sorting coculture and CCK8 experiments were used to explore the effect of CD8+ T cells on keloid-associated fibroblasts. Neural network models were used to construct associations among CD28, CD8+ T cells and the severity of keloids and to identify high-risk values. Result: The expression levels of costimulatory molecules (CD28, CD80, CD86 and CD40L) in the skin tissue of patients with keloids were higher than the levels in healthy people (p < 0.05). The number of CD8+ T cells was significantly higher in Group N than in Group C (p < 0.05). The fluorescence intensities of CD28 and CD8+ T cells in Group N were significantly higher than those in Group C (p = 0.0051). The number and viability of fibroblasts cocultured with CD8+ T cells were significantly reduced compared with those of the control (p < 0.05). The expression of CD28 and CD8+ T cells as the input layer may be predictors of the severity of keloids with mVSS as the output layer. The high-risk early warning indicator for CD28 is 10–34, and the high-risk predictive indicator for CD8+ T cells is 13–28. Conclusions: The abnormal expression of costimulatory molecules may lead to the abnormal activation of CD8+ T cells. CD8+ T cells may drive keloid-associated immunosuppression. The expression of CD28 and CD8+ T cells as an input layer may be a predictor of keloid severity. CD28 and CD8+ T cells play an important role in the development of keloids.  相似文献   

16.
Background: The aim of the study was to evaluate the differences in the circulating immune cells’ subgroups after the atherosclerotic plaque removal in patients presenting with postoperative complications as compared to the patients without complications after carotid endarterectomy (CEA). Methods: Patients with significant carotid atherosclerosis (n = 124, age range: 44 to 87 years) who underwent CEA were enrolled in a prospective study. The immunology study using flow cytometry was performed to determine the percentages of peripheral blood T cells (CD4+, CD8+, Treg—CD4+/CD25+) and NK (natural killer) cells before and after the procedure. The data were expressed as the percentage of total lymphocytes ± the standard error of mean. Results: The mean percentage of lymphocytes (61.54% ± 17.50% vs. 71.82% ± 9.68%, p = 0.030) and CD4 T lymphocytes (T helper, 38.13% ± 13.78% vs. 48.39% ± 10.24%, p = 0.027) was significantly lower six hours after CEA in patients with postoperative 30-day cardiovascular and neurological complications as compared to the group without complications. On the other hand the mean NK level in the group with complications was significantly higher (21.61% ± 9.00% vs. 15.80% ± 9.31%, p = 0.048). Conclusions: The results of this study suggest that after carotid endarterectomy the percentages of circulating immune cells subsets differ in patients with and without postoperative complications.  相似文献   

17.
HCMV drives complex and multiple cellular immune responses, which causes a persistent immune imprint in hosts. This study aimed to achieve both a quantitative determination of the frequency for various anti-HCMV immune cell subsets, including CD8 T, γδT, NK cells, and a qualitative analysis of their phenotype. To map the various anti-HCMV cellular responses, we used a combination of three HLApeptide tetramer complexes (HLA-EVMAPRTLIL, HLA-EVMAPRSLLL, and HLA-A2NLVPMVATV) and antibodies for 18 surface markers (CD3, CD4, CD8, CD16, CD19, CD45RA, CD56, CD57, CD158, NKG2A, NKG2C, CCR7, TCRγδ, TCRγδ2, CX3CR1, KLRG1, 2B4, and PD-1) in a 20-color spectral flow cytometry analysis. This immunostaining protocol was applied to PBMCs isolated from HCMV and HCMV+ individuals. Our workflow allows the efficient determination of events featuring HCMV infection such as CD4/CD8 ratio, CD8 inflation and differentiation, HCMV peptide-specific HLA-EUL40 and HLA-A2pp65CD8 T cells, and expansion of γδT and NK subsets including δ2γT and memory-like NKG2C+CD57+ NK cells. Each subset can be further characterized by the expression of 2B4, PD-1, KLRG1, CD45RA, CCR7, CD158, and NKG2A to achieve a fine-tuned mapping of HCMV immune responses. This assay should be useful for the analysis and monitoring of T-and NK cell responses to HCMV infection or vaccines.  相似文献   

18.
Decreased platelet count represents a feature of acute liver failure (ALF) pathogenesis. Platelets are the reservoir of transforming growth factor 1 (TGF-β1), a multipotent cytokine involved in the maintenance of, i.a., central nervous system homeostasis. Here, we analyzed the effect of a decrease in TGF-β1 active form on synaptic proteins levels, and brain electrophysiology, in mice after intraperitoneal (ip) administration of TGF-β1 antibody (anti-TGF-β1; 1 mg/mL). Next, we correlated it with a thrombocytopenia-induced TGF-β1 decrease, documented in an azoxymethane-induced (AOM; 100 mM ip) model of ALF, and clarified the impact of TGF-β1 decrease on blood–brain barrier functionality. The increase of both synaptophysin and synaptotagmin in the cytosolic fraction, and its reduction in a membrane fraction, were confirmed in the AOM mice brains. Both proteins’ decrease in analyzed fractions occurred in anti-TGF-β1 mice. In turn, an increase in postsynaptic (NR1 subunit of N-methyl-D-aspartate receptor, postsynaptic density protein 95, gephyrin) proteins in the AOM brain cortex, but a selective compensatory increase of NR1 subunit in anti-TGF-β mice, was observed. The alterations of synaptic proteins levels were not translated on electrophysiological parameters in the anti-TGF-β1 model. The results suggest the impairment of synaptic vesicles docking to the postsynaptic membrane in the AOM model. Nevertheless, changes in synaptic protein level in the anti-TGF-β1 mice do not affect neurotransmission and may not contribute to neurologic deficits in AOM mice.  相似文献   

19.
20.
Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号