首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Genetically encoded red fluorescent proteins with a large Stokes shift (LSSRFPs) can be efficiently co-excited with common green FPs both under single- and two-photon microscopy, thus enabling dual-color imaging using a single laser. Recent progress in protein development resulted in a great variety of novel LSSRFPs; however, the selection of the right LSSRFP for a given application is hampered by the lack of a side-by-side comparison of the LSSRFPs’ performance. In this study, we employed rational design and random mutagenesis to convert conventional bright RFP mScarlet into LSSRFP, called LSSmScarlet, characterized by excitation/emission maxima at 470/598 nm. In addition, we utilized the previously reported LSSRFPs mCyRFP1, CyOFP1, and mCRISPRed as templates for directed molecular evolution to develop their optimized versions, called dCyRFP2s, dCyOFP2s and CRISPRed2s. We performed a quantitative assessment of the developed LSSRFPs and their precursors in vitro on purified proteins and compared their brightness at 488 nm excitation in the mammalian cells. The monomeric LSSmScarlet protein was successfully utilized for the confocal imaging of the structural proteins in live mammalian cells and multicolor confocal imaging in conjugation with other FPs. LSSmScarlet was successfully applied for dual-color two-photon imaging in live mammalian cells. We also solved the X-ray structure of the LSSmScarlet protein at the resolution of 1.4 Å that revealed a hydrogen bond network supporting excited-state proton transfer (ESPT). Quantum mechanics/molecular mechanics molecular dynamic simulations confirmed the ESPT mechanism of a large Stokes shift. Structure-guided mutagenesis revealed the role of R198 residue in ESPT that allowed us to generate a variant with improved pH stability. Finally, we showed that LSSmScarlet protein is not appropriate for STED microscopy as a consequence of LSSRed-to-Red photoconversion with high-power 775 nm depletion light.  相似文献   

2.
Genetically encoded photosensitizers are increasingly used as optogenetic tools to control cell fate or trigger intracellular processes. A monomeric red fluorescent protein called SuperNova has been recently developed, however, it demonstrates suboptimal characteristics in most phototoxicity-based applications. Here, we applied directed evolution to this protein and identified SuperNova2, a protein with S10R substitution that results in enhanced brightness, chromophore maturation and phototoxicity in bacterial and mammalian cell cultures.  相似文献   

3.
The combined technologies of optical microscopy and selective probes allow for real-time analysis of protein function in living cells. Synthetic chemistry offers a means to develop specific, protein-targeted probes that exhibit greater optical and chemical functionality than the widely used fluorescent proteins. Here we describe pharmacokinetically optimized, fluorescent trimethoprim (TMP) analogues that can be used to specifically label recombinant proteins fused to E. coli dihydrofolate reductase (eDHFR) in living, wild-type mammalian cells. These improved fluorescent tags exhibited high specificity and fast labeling kinetics, and they could be detected at a high signal-to-noise ratio by using fluorescence microscopy and fluorescence-activated cell sorting (FACS). We also show that fluorescent TMP-eDHFR complexes are complements to green fluorescent protein (GFP) for two-color protein labeling experiments in cells.  相似文献   

4.
The tetrameric red fluorescent protein from Discosoma sp. coral (DsRed) has previously been engineered to produce dimeric and monomeric fluorescent variants with excitation and emission profiles that span the visible spectrum. The brightest of the effectively monomeric DsRed variants is tdTomato—a tandem fusion of a dimeric DsRed variant. Here we describe the engineering of brighter red (RRvT), green (GGvT), and green–red heterodimeric (GRvT) tdTomato variants. GRvT exhibited 99 % intramolecular FRET efficiency, resulting in long Stokes shift red fluorescence. These new variants could prove useful for multicolor live‐cell imaging applications.  相似文献   

5.
Consensus engineering has been used to increase the stability of a number of different proteins, either by creating consensus proteins from scratch or by modifying existing proteins so that their sequences more closely match a consensus sequence. In this paper we describe the first application of consensus engineering to the ab initio creation of a novel fluorescent protein. This was based on the alignment of 31 fluorescent proteins with >62% homology to monomeric Azami green (mAG) protein, and used the sequence of mAG to guide amino acid selection at positions of ambiguity. This consensus green protein is extremely well expressed, monomeric and fluorescent with red shifted absorption and emission characteristics compared to mAG. Although slightly less stable than mAG, it is better expressed and brighter under the excitation conditions typically used in single molecule fluorescence spectroscopy or confocal microscopy. This study illustrates the power of consensus engineering to create stable proteins using the subtle information embedded in the alignment of similar proteins and shows that the benefits of this approach may extend beyond stability.  相似文献   

6.
Red fluorescent genetically encoded calcium indicators (GECIs) have expanded the available pallet of colors used for the visualization of neuronal calcium activity in vivo. However, their calcium-binding domain is restricted by calmodulin from metazoans. In this study, we developed red GECI, called FRCaMP, using calmodulin (CaM) from Schizosaccharomyces pombe fungus as a calcium binding domain. Compared to the R-GECO1 indicator in vitro, the purified protein FRCaMP had similar spectral characteristics, brightness, and pH stability but a 1.3-fold lower ΔF/F calcium response and 2.6-fold tighter calcium affinity with Kd of 441 nM and 2.4–6.6-fold lower photostability. In the cytosol of cultured HeLa cells, FRCaMP visualized calcium transients with a ΔF/F dynamic range of 5.6, which was similar to that of R-GECO1. FRCaMP robustly visualized the spontaneous activity of neuronal cultures and had a similar ΔF/F dynamic range of 1.7 but 2.1-fold faster decay kinetics vs. NCaMP7. On electrically stimulated cultured neurons, FRCaMP demonstrated 1.8-fold faster decay kinetics and 1.7-fold lower ΔF/F values per one action potential of 0.23 compared to the NCaMP7 indicator. The fungus-originating CaM of the FRCaMP indicator version with a deleted M13-like peptide did not interact with the cytosolic environment of the HeLa cells in contrast to the metazoa-originating CaM of the similarly truncated version of the GCaMP6s indicator with a deleted M13-like peptide. Finally, we generated a split version of the FRCaMP indicator, which allowed the simultaneous detection of calcium transients and the heterodimerization of bJun/bFos interacting proteins in the nuclei of HeLa cells with a ΔF/F dynamic range of 9.4 and a contrast of 2.3–3.5, respectively.  相似文献   

7.
A reengineered human cellular retinol binding protein II (hCRBPII), a 15-kDa protein belonging to the intracellular lipid binding protein (iLBP) family, generates a highly fluorescent red pigment through the covalent linkage of a merocyanine aldehyde to an active site lysine residue. The complex exhibits “turn-on” fluorescence, due to a weakly fluorescent aldehyde that “lights up” with subsequent formation of a strongly fluorescent merocyanine dye within the binding pocket of the protein. Cellular penetration of merocyanine is rapid, and fluorophore maturation is nearly instantaneous. The hCRBPII/merocyanine complex displays high quantum yield, low cytotoxicity, specificity in labeling organelles, and compatibility in both cancer cell lines and yeast cells. The hCRBPII/merocyanine tag is brighter than most common red fluorescent proteins.  相似文献   

8.
Phycobiliproteins are constituents of phycobilisomes that can harvest orange, red, and far-red light for photosynthesis in cyanobacteria and red algae. Phycobiliproteins in the phycobilisome cores, such as allophycocyanins, absorb far-red light to funnel energy to the reaction centers. Therefore, allophycocyanin subunits have been engineered as far-red fluorescent proteins, such as BDFP1.6. However, most current fluorescent probes have small Stokes shifts, which limit their applications in multicolor bioimaging. mCherry is an excellent fluorescent protein that has maximal emittance in the red spectral range and a high fluorescence quantum yield, and thus, can be used as a donor for energy transfer to a far-red acceptor, such as BDFP1.6, by FRET. In this study, mCherry was fused with BDFP1.6, which resulted in a highly bright far-red fluorescent protein, BDFP2.0, with a large Stokes shift (≈79 nm). The excitation energy was absorbed maximally at 587 nm by mCherry and transferred to BDFP1.6 efficiently; thus emitting strong far-red fluorescence maximally at 666 nm. The effective brightness of BDFP2.0 in mammalian cells was 4.2-fold higher than that of iRFP670, which has been reported as the brightest far-red fluorescent protein. The large Stokes shift of BDFP2.0 facilitates multicolor bioimaging. Therefore, BDFP2.0 not only biolabels mammalian cells, including human cells, but also biolabels various intracellular components in dual-color imaging.  相似文献   

9.
NTnC-like green fluorescent genetically encoded calcium indicators (GECIs) with two calcium ion binding sites were constructed using the insertion of truncated troponin C (TnC) from Opsanus tau into green fluorescent proteins (GFPs). These GECIs are small proteins containing the N- and C-termini of GFP; they exert a limited effect on the cellular free calcium ion concentration; and in contrast to calmodulin-based calcium indicators they lack undesired interactions with intracellular proteins in neurons. The available TnC-based NTnC or YTnC GECIs had either an inverted response and high brightness but a limited dynamic range or a positive response and fast kinetics in neurons but lower brightness and an enhanced but still limited dF/F dynamic range. Here, we solved the crystal structure of NTnC at 2.5 Å resolution. Based on this structure, we developed positive NTnC2 and inverted iNTnC2 GECIs with a large dF/F dynamic range in vitro but very slow rise and decay kinetics in neurons. To overcome their slow responsiveness, we swapped TnC from O. tau in NTnC2 with truncated troponin C proteins from the muscles of fast animals, namely, the falcon, hummingbird, cheetah, bat, rattlesnake, and ant, and then optimized the resulting constructs using directed molecular evolution. Characterization of the engineered variants using purified proteins, mammalian cells, and neuronal cultures revealed cNTnC GECI with truncated TnC from Calypte anna (hummingbird) to have the largest dF/F fluorescence response and fast dissociation kinetics in neuronal cultures. In addition, based on the insertion of truncated TnCs from fast animals into YTnC2, we developed fYTnC2 GECI with TnC from Falco peregrinus (falcon). The purified proteins cNTnC and fYTnC2 had 8- and 6-fold higher molecular brightness and 7- and 6-fold larger dF/F responses to the increase in Ca2+ ion concentration than YTnC, respectively. cNTnC GECI was also 4-fold more photostable than YTnC and fYTnC2 GECIs. Finally, we assessed the developed GECIs in primary mouse neuronal cultures stimulated with an external electric field; in these conditions, cNTnC had a 2.4-fold higher dF/F fluorescence response than YTnC and fYTnC2 and was the same or slightly slower (1.4-fold) than fYTnC2 and YTnC in the rise and decay half-times, respectively.  相似文献   

10.
The design of bright and functional dye–protein conjugates requires hydrophilic and stable fluorophores with high molar absorption coefficients and high fluorescence quantum yields, which must not be prone to dimerization, as well as conservation of protein function and suppression of protein association. Although many synthetic dyes meet these needs, the influence of dye charge on bioconjugate performance is commonly neglected. This encouraged us to assess the spectroscopic properties, antibody functionality, binding behavior, folding, and association of conjugates of the therapeutic antibodies trastuzumab and cetuximab with the red cyanine dyes S0586, S2381, and 6SIDCC (bearing two, three, and six sulfonate groups, respectively). Our results demonstrate a negligible effect of dye labeling on antibody folding, yet a strong influence of label charge and density on antibody isoelectric points and association. Especially 6SIDCC decreased strongly the isoelectric points of both antibodies and their heavy or light chains even at low labeling degrees, thus favoring protein association. Although an increasingly negative dye charge reduces antigen affinity as shown in a competitive immunoassay, all conjugates still bound to cells overexpressing the target of the respective antibody. Obviously, dyes that cause minimum dimerization with a small number of charged groups are best for conjugate brightness, minimum protein association, and strong target binding. This underlines the need to consider dye charge for the rational design of conjugates with optimum performance.  相似文献   

11.
Fusion proteins of human O(6)-alkylguanine-DNA alkyltransferase (AGT) can be specifically labeled with a wide variety of synthetic probes in mammalian cells; this makes them an attractive tool for studying protein function. However, to avoid undesired labeling of endogenous wild-type AGT (wtAGT), the specific labeling of AGT fusion proteins has been restricted to AGT-deficient mammalian cell lines. We present here the synthesis of an inhibitor of wtAGT and the generation of AGT mutants that are resistant to this inhibitor. This enabled the inactivation of wtAGT and specific labeling of fusion proteins of the AGT mutant in vitro and in living cells. The ability to specifically label AGT fusion proteins in the presence of endogenous AGT, after brief incubation of the cells with a small-molecule inhibitor, should significantly broaden the scope of application of AGT fusion proteins for studying protein function in living cells.  相似文献   

12.
Biliproteins have extended the spectral range of fluorescent proteins into the far-red (FR) and near-infrared (NIR) regions. These FR and NIR fluorescent proteins are suitable for the bioimaging of mammalian tissues and are indispensable for multiplex labeling. Their application, however, presents considerable challenges in increasing their brightness, while maintaining emission in FR regions and oligomerization of monomers. Two fluorescent biliprotein triads, termed BDFP1.2/1.6:3.3:1.2/1.6, are reported. In mammalian cells, these triads not only have extremely high brightness in the FR region, but also have monomeric oligomerization. The BDFP1.2 and BDFP1.6 domains covalently bind to biliverdin, which is accessible in most cells. The BDFP3.3 domain noncovalently binds phycoerythrobilin that is added externally. A new method of replacing phycoerythrobilin with proteolytically digested BDFP3.3 facilitates this labeling. BDFP3.3 has a very high fluorescence quantum yield of 66 %, with maximal absorbance at λ=608 nm and fluorescence at λ=619 nm. In BDFP1.2/1.6:3.3:1.2/1.6, the excitation energy that is absorbed in the red region by phycoerythrobilin in the BDFP3.3 domain is transferred to biliverdin in the two BDFP1.2 or BDFP1.6 domains and fluoresces at λ≈670 nm. The combination of BDFP3.3 and BDFP1.2/1.6:3.3:1.2/1.6 can realize dual-color labeling. Labeling various proteins by fusion to these new fluorescent biliproteins is demonstrated in prokaryotic and mammalian cells.  相似文献   

13.
Peptide pore blockers and their fluorescent derivatives are useful molecular probes to study the structure and functions of the voltage-gated potassium Kv1.3 channel, which is considered as a pharmacological target in the treatment of autoimmune and neurological disorders. We present Kv1.3 fluorescent ligand, GFP–MgTx, constructed on the basis of green fluorescent protein (GFP) and margatoxin (MgTx), the peptide, which is widely used in physiological studies of Kv1.3. Expression of the fluorescent ligand in E. coli cells resulted in correctly folded and functionally active GFP–MgTx with a yield of 30 mg per 1 L of culture. Complex of GFP–MgTx with the Kv1.3 binding site is reported to have the dissociation constant of 11 ± 2 nM. GFP–MgTx as a component of an analytical system based on the hybrid KcsA–Kv1.3 channel is shown to be applicable to recognize Kv1.3 pore blockers of peptide origin and to evaluate their affinities to Kv1.3. GFP–MgTx can be used in screening and pre-selection of Kv1.3 channel blockers as potential drug candidates.  相似文献   

14.
Comprehensive proteomic analyses require new methodologies to accelerate the correlation of gene sequence with protein function. Key tools for such efforts include biophysical probes that integrate into the covalent architecture of proteins. Lanthanide-binding tags (LBTs) are expressible, multitasking fusion partners that are optimized to bind lanthanide ions and have several desirable attributes, which include long-lived luminescence, excellent X-ray scattering power for phase determination, and magnetic properties to facilitate NMR spectroscopic structure elucidation. Herein, we present peptide sequences with a 40-fold higher affinity for Tb(3+) ions and significantly brighter luminescence intensity compared with existing peptides. Incorporation of an LBT onto ubiquitin as a prototype fusion protein allows the use of powerful protein-visualization techniques, which include rapid luminescence detection of LBT-tagged proteins in SDS-PAGE gels, as well as determination of protein concentrations in complex mixtures. The LBT strategy is a new alternative for expressing fluorescent fusion proteins by routine molecular biological techniques.  相似文献   

15.
We evaluated the performance of green fluorescent magnetic Fe3O4 nanoparticles (NPs) as gene carrier and location in pig kidney cells. When the mass ratio of NPs to green fluorescent protein plasmid DNA reached 1:16 or above, DNA molecules can be combined completely with NPs, which indicates that the NPs have good ability to bind negative DNA. Atomic force microscopy (AFM) experiments were carried out to investigate the binding mechanism between NPs and DNA. AFM images show that individual DNA strands come off of larger pieces of netlike agglomerations and several spherical nanoparticles are attached to each individual DNA strand and interact with each other. The pig kidney cells were labelled with membrane-specific red fluorescent dye 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate and nucleus-specific blue fluorescent dye 4,6-diamidino-2-phenylindole dihydrochloride. We found that green fluorescent nanoparticles can past the cell membrane and spread throughout the interior of the cell. The NPs seem to locate more frequently in the cytoplasm than in the nucleus.  相似文献   

16.
采用添加不同种类和用量荧光增白剂的标准洗衣液洗涤不同颜色纯棉织物,对比分析洗涤后织物的L*,a*,b*和C*值,反射率曲线以及目视评价结果,得到荧光增白剂对不同颜色纯棉织物的影响效果。结果表明,荧光增白剂可使增白布更白,漂白和米白布明显变亮白,浅蓝和粉红布样更加艳丽,浅灰和浅黄布样泛白或变浅,使卡其布样明显泛白,对大红、深蓝、黑色等深色纯棉织物无明显影响。  相似文献   

17.
The widely used green fluorescent protein (GFP) decarboxylates upon irradiation; this involves removal of the acidic function of the glutamic acid at position 222, thereby resulting in the irreversible photoconversion of GFP. To suppress this phenomenon, the photostable, non‐photoconvertible histidine was introduced at position 222 in GFP. The variant E222H shows negligible photodynamic processes and high expression yield. In addition, the stable and bright fluorescence over a wide pH range makes the E222H protein an alternative for GFP in fluorescence imaging and spectroscopy. Other fluorescent proteins are predicted to benefit from replacement of the catalytic glutamic acid by histidine.  相似文献   

18.
The scientific community is still looking for a bright, stable red fluorescent protein (FP) as functional as the current best derivatives of green fluorescent protein (GFP). The red FPs exploit the reduced background of cells imaged in the red region of the visible spectrum, but photophysical short comings have limited their use for some spectroscopic approaches. Introduced nearly a decade ago, mCherry remains the most often used red FP for fluorescence correlation spectroscopy (FCS) and other single molecule techniques, despite the advent of many newer red FPs. All red FPs suffer from complex photophysics involving reversible conversions to a dark state (flickering), a property that results in fairly low red FP quantum yields and potential interference with spectroscopic analyses including FCS. The current report describes assays developed to determine the best working conditions for, and to uncover the shortcoming of, four recently engineered red FPs for use in FCS and other diffusion and spectroscopic studies. All five red FPs assayed had potential shortcomings leading to the conclusion that the current best red FP for FCS is still mCherry. The assays developed here aim to enable the rapid evaluation of new red FPs and their smooth adaptation to live cell spectroscopic microscopy and nanoscopy.  相似文献   

19.
An ideal technology for direct imaging of post-translationally modified proteins would be one in which the appearance of a fluorescent signal is linked to a modification dependent protein-activation event. Herein, we utilize the protein semisynthesis technique, expressed protein ligation (EPL), to prepare caged analogues of the signaling protein Smad2; the function and fluorescence of the analogues were then photocontrolled in a correlated fashion. We show that this strategy permits titration of the cellular levels of active phosphorylated Smad2 in its biologically relevant, full-length form. We also prepared a nonphosphorylated, caged full-length Smad2 analogue labeled with an orthogonal fluorophore, and simultaneously imaged the phosphorylated and nonphosphorylated forms of the protein in the same cell. This strategy should enable the dissection of the cellular consequences of post-translational modifications (PTMs) by direct comparison of the behavior of the modified and unmodified forms of the protein following uncaging.  相似文献   

20.
Fluorescence microscopy reveals the localization, spatial distribution, and temporal dynamics of the specifically labeled organelles in living cells. Labeling with exogenous conjugates prepared from fluorescent dyes and small molecules (ligands) is an attractive alternative to the use of fluorescent proteins, but proved to be challenging due to insufficient cell-permeability of the probes, unspecific staining, or low dye brightness. We evaluated four green-emitting rhodamine dyes and their conjugates intended for the specific labeling of lysosomes, mitochondria, tubulin, and actin in living cells. The imaging performance of the probes in living human fibroblasts has been studied by using confocal and stimulated emission depletion (STED) super-resolution microscopy with a commercial 595 nm STED laser. Two bright and photostable dyes (LIVE 510 and LIVE 515) provide specific and versatile staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号