共查询到17条相似文献,搜索用时 78 毫秒
1.
为了实现较好保留图像边缘特征的有效去噪,提出了一种基于边缘检测的Contourlet变换去噪方法。该方法先用LOG算子提取图像边缘,进而在Contourlet变换域上对图像的边缘部分和非边缘部分分别选取不同阈值进行最佳软阈值去噪处理。实验表明,与采用Donoho软阈值的Contourlet变换去噪方法相比,该方法可有效地保留图像的边缘信息,达到了更好的去噪效果。 相似文献
2.
研究了小波变换在图像处理中的缺陷,以及Contourlet变换在图像处理中产生伪Gibbs失真的原因。为了在多尺度分析框架下改进图像去噪的效果,提出了一种基于非抽样Contourlet变换的图像去噪算法,利用非抽样Contourlet变换的多尺度多方向性以及平移不变性,对加噪图像进行非抽样Contourlet变换得到变换系数,然后对变换系数采用分层最佳软阈值处理,最后将其反变换得到去噪后的图像。实验结果表明,与Contourlet变换图像去噪算法相比,该算法可以达到更好的效果。 相似文献
3.
基于非抽样Contourlet变换的最佳软阈值图像去噪 总被引:1,自引:0,他引:1
方洁 《计算机技术与发展》2011,21(2)
研究了小波变换在图像处理中的缺陷,以及Contourlet变换在图像处理中产生伪Gibbs失真的原因.为了在多尺度分析框架下改进图像去噪的效果,提出了一种基于非抽样Contourlet变换的图像去噪算法,利用非抽样Contourlet变换的多尺度多方向性以及平移不变性,对加噪图像进行非抽样Contourlet变换得到变换系数,然后对变换系数采用分层最佳软阈值处理,最后将其反变换得到去噪后的图像.实验结果表明,与Contourlet变换图像去噪算法相比,该算法可以达到更好的效果. 相似文献
4.
5.
基于小波变换的分形图像去噪与边缘检测 总被引:3,自引:0,他引:3
本文根据分数布朗随机场(FBR)模型理论,运用小波变换法先对图像进行去噪,然后对图像的分形参数H进行估计,进而根据分形参数H的值的奇异性来检测图像的边缘。实验表明,本文的算法能有效地抑制噪声的影响,并能更好地检测出图像的边缘。 相似文献
6.
一种基于边缘检测的图像去噪优化方法 总被引:2,自引:2,他引:2
为了消除或衰减存在于图像上的噪声,同时尽可能地保留图像细节,提出基于边缘检测的图像去噪算法.先通过小波边缘检测法求出有噪图像的边缘图像;再通过小波边缘检测方法确定哪些小波系数是图像的边缘特征,这些小波系数将不受阈值去噪的影响,因此,可以只是根据噪声方差来设置去噪的阈值,对原有噪图像进行小波去噪,得到平滑图像;最后,将边缘图像嵌入平滑图像中,得到去噪后的图像.实验结果表明,与普通的小波阈值去噪方法相比,上述算法不但能在有效去噪的同时保留图像的细节信息,而且能提高去噪后图像的峰值信噪比. 相似文献
7.
8.
基于小波变换的图像去噪研究 总被引:3,自引:0,他引:3
鉴于传统的去噪方法难于在时频域得到很好的兼顾,提出一种基于小波变换的去噪方法.通过对图像实施二维离散小波变换,在小波域中,选取适当的阈值对小波系数进行处理.Matlab仿真试验表明,具有很好的效果. 相似文献
9.
10.
针对Contourlet分解的细节图像在奇异点附近产生振荡,在去噪过程中会产生伪吉布斯现象,提出一种改进的拉普拉斯金字塔实现基于Contourlet变换的图像去噪算法。阈值的选取不仅考虑不同尺度中噪声含量的不同,而且在不同方向上对阈值进行了调整。实验结果表明,利用该文去噪方法进行去噪比其他方法得到更好的视觉效果和更高的PSNR值。 相似文献
11.
12.
Contourlet变换是多尺度几何分析中十分重要的一种方法,可以实现灵活的多分辨、局部、多方向图像表示,但是由于不具有平移不变性,在图像去噪中易产生伪吉布斯现象,这里应用冗余Contourlet变换,具有平移不变性,且能有效表示图像几何纹理信息。在去噪应用中考虑分解系数的层间信息,将BivaShrink方法推广到冗余Contourlet变换中。实验结果表明,本文方法提高了去噪后图像的峰值信噪比(PSNR),同时有效保存了图像纹理信息,视觉效果更好。 相似文献
13.
14.
一种基于Contourlet变换的图像去噪方法 总被引:3,自引:0,他引:3
在变换域阚值去噪过程中,阈值的选取和阚值处理方法至关重要。提出一种基于conmurlet变换的图像去噪方法。采用分层阈值,为每一级contourlet系数选取一个阈值。阈值处理中给出一种基于邻域的阈值处理方法,不仅考虑单个系数幅值的大小,而且考虑它的邻域系数幅值的大小。同时为了抑制在去噪图像边缘附近的伪吉布斯效应,引入cycle spinning来抑制这种图像失真。实验结果表明,利用文中去噪方法进行去噪比其他方法得到更好的视觉效果和更高的PSNR值。 相似文献
15.
一种改进的非下采样轮廓波变换图像去噪算法 总被引:2,自引:0,他引:2
优化图像去噪问题,在非下采样轮廓波变换图像去噪中,收缩阈值的确定仅依赖变换子带系数的幅值,使得过多图像系数和噪声系数一并去除,导致滤波图像模糊。从检测变换子带几何结构出发,引入自蛇模型对子带系数作几何结构检测并抑制噪声后,估计双阈值将子带系数划分为三类并作不同处理,实现对噪声系数的去除和对图像系数的保护。实验结果表明,相对现有典型算法,改进算法获得的峰值信噪比提高了0.1-0.9dB,图像系数被更好识别和保留,滤波图像中边缘与区域细节损失减少,提高去噪效果,保留图像的有效信息。 相似文献
16.
一种基于图像边缘检测的全变分的去噪方法 总被引:2,自引:1,他引:2
提出了一种基于边缘检测的全变分图像去噪方法.在利用全变分去噪之前,先用Canny算子检测图像的边缘,对检测出的边缘区域和非边缘区域做标记;然后在边缘和非边缘区域设置不同的均衡系数,利用全变分模型对图像进行去噪.实验结果表明该算法能抑制以往全变分模型方法产生的阶梯效应,具有较好的图像恢复效果. 相似文献
17.
边缘特征是图象最为有用的高频信息,因此,在图象去噪的同时,尽量保留图象的边缘特征,应是图象去噪首要顾及的问题。基于这一思想,提出了基于边缘检测的图象小波阈值去噪方法。该方法在去噪之前,先通过小波边缘检测方法确定哪些小波系数是图象的边缘特征,这些小波系数将不受阈值去噪的影响,因此,可以只是根据噪声方差来设置去噪的阈值,而不必担心损害图象的边缘特征。理论分析和实验结果都表明,与普通的小波阈值去噪方法相比,该方法不但可以保持图象的边缘信息,而且能提高去噪后图象的峰值信噪比1-2dB。要做到既去除图象噪声,又不模糊图象边缘特征是很困难的。该方法把去噪和边缘检测结合起来,在一定程度上解决了这种两难的问题。 相似文献