首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文采用测定水化过程结合水量、XRD和SEM等技术研究了纯高钙粉煤灰的水化及S-激发剂对高钙粉煤灰的激发作用。结果表明,高钙粉煤灰由于含有较多的fCaO,水化时产生较大的膨胀而使试样粉化、无一点强度,掺入S-激发剂可较好地激发高钙粉煤灰的潜在水硬性,增加水化过程结合水量,从而使掺有S-激发剂的上粉煤灰试样水化不同龄期后有一定的强度。  相似文献   

2.
采用XRD、IR、SEM、和EDS等分析手段,研究了高钙粉煤灰作为添加剂制备的赤泥偏高岭土胶凝材料的力学性能和水化产物.结果表明:合适掺量的高钙粉煤灰(<14%)有助于试样力学性能的提高;高钙粉煤灰作为添加剂所制备的赤泥偏高岭土胶凝材料,其水化产物主要有水化硅酸铝钙、沸石相、羟基硅酸铝、钙长石、蓝晶石、水化硅酸钙和叙永石. 随着试样养护龄期的增长胶凝材料结构更密实,形成PSS型结构.  相似文献   

3.
钢渣是一种大宗固体废弃物,由于安定性不良、易磨性差、活性较低而利用率低,占用土地污染环境。钢渣分相熟料技术可突破钢渣安定性、易磨性瓶颈并弥补活性短板,模拟钢渣分相熟料制备技术在1 400℃下制备钢渣分相熟料,并研究了钢渣掺量对分相熟料易烧性、易磨性及其水泥的水化程度和抗压强度的影响。结果表明掺入钢渣会明显提高熟料的易烧性;钢渣掺量为16.86%的分相熟料易磨性最好,与常规熟料易磨性差异不大;钢渣分相熟料前期胶凝活性偏低,后期增长较快,可达到与42.5级普通硅酸盐水泥相当的强度,为钢渣大规模低耗高效的处置应用提供了理论支持。  相似文献   

4.
《焦作工学院学报》2019,(6):140-145
为实现炉底灰的大规模资源化利用,研究了原料掺量对炉底灰-粉煤灰胶凝体系力学性能的影响,采用X射线衍射、红外光谱、扫描电镜和能谱分析对胶凝体系水化产物的矿物组成、化学结构和微观形貌进行分析,结果表明:水泥掺量一定时,随着炉底灰掺量的提高,试样28 d抗压强度不断增大,而各龄期抗折强度及3,7 d抗压强度呈先增大后减小的趋势,粉煤灰对于提高胶凝体系早期强度具有不可或缺的作用,但掺量不宜过多;炉底灰可促进水泥中硅酸钙早期水化,生成更多氢氧化钙和钙矾石;水化后期,随着炉底灰掺量增大,C—S—H凝胶生成量增多并连接成密实的整体,针状文石晶体及纺锤形碳酸钙晶体桥接于水化试样微观裂隙两侧,阻碍裂隙的扩展,进一步提高胶凝试样的力学强度。  相似文献   

5.
低碱度转炉钢渣用作矿物掺和料的试验研究   总被引:1,自引:0,他引:1  
将低碱度钢渣同矿渣复合掺配用作矿物掺合料进行了试验研究.利用XRD分析了低碱度钢渣的矿物组成并借助扫描电镜微观观察对矿物掺和料的反应机理进行了分析.试验结果表明:对于低碱度钢渣,适宜的粉磨细度为400~500 m2/g;低碱度钢渣单独作为矿物掺和料时掺量不宜超过20%;用矿渣和钢渣复合掺配时,总掺量在30%和40%时,力学性能接近基准试样,且矿渣和钢渣的最佳配比为2∶1.较之单掺钢渣水化试样,复掺钢渣、矿渣水化试样的水化速度要快,结构更致密,无明显片状Ca(OH)2晶体.  相似文献   

6.
针对钢渣用于基层材料易发生膨胀的问题,采用钢渣、高炉矿渣微粉、土混拌并结合土体固化技术,制备道路基层材料钢渣混合土。对16组不同配比土样开展了击实、膨胀率、无侧限抗压强度试验。研究表明:钢渣混合土最佳含水率受配比影响较小,均维持在12%~14%;最大干密度随钢渣掺量的减少而降低,随高炉矿渣微粉掺量的增加而降低;高炉矿渣微粉的掺入可显著降低钢渣混合土膨胀率,提高其无侧限抗压强度;7、14、28、90 d无侧限抗压强度均随钢渣占比增加呈先增后减趋势,配比为50%钢渣、50%土时达到最大。微观结构分析表明:土颗粒表面电荷的改变使得钢渣混合土体结构在成型时更易受压密实,钢渣中游离氧化钙(f-CaO)在固化过程中的水化反应受到明显抑制,主要与矿渣中二氧化硅(SiO2)发生消解反应生成水化硅酸钙凝胶(C—S—H);与此同时,钢渣、土相互包裹的颗粒间堆叠效应及C—S—H凝胶填充混合料缝隙产生的自密实效应进一步提高了土体强度,从而制备出强度高、安定性好的钢渣混合土。  相似文献   

7.
为了提高水工大体积混凝土中的粉煤灰掺量,研究了中热水泥 粉煤灰体系的贫钙问题.通过抗折和抗压强度试验研究了粉煤灰掺量对中热水泥-粉煤灰体系的强度的影响,通过水化率测定和XRD分析研究了中热水泥-粉煤灰体系的水化特性.结果表明:在强度实验中,粉煤灰存在一个允许掺量,这个掺量随着养护龄期的增长而提高0.3 d和28 d时,允许掺量小于10%, 而在3.5a时,允许掺量高达65%以上;体系中粉煤灰的水化速率很慢,粉煤灰明显降低了体系中的Ca(OH)2,随着粉煤灰掺量增加和龄期延长,Ca(OH)2减少.在中热水泥-粉煤灰体系中并不存在贫钙问题.  相似文献   

8.
研究旨在开发一种以烟气脱硫石膏为主要原料,矿渣粉为活性成分,熟料、钢渣作为碱性激发剂的超硫水硬性胶凝材料。该胶凝体系脱硫石膏掺量高达45%,且以2%熟料激发时,3d抗压强度达20.5MPa,28d为48.7MPa;而以8%钢渣激发,分别达15.8MPa和50.7MPa。XRD和SEM分析表明,脱硫石膏-矿渣-激发剂体系的水化产物主要是钙矾石和C-S-H凝胶。脱硫石膏在水化过程中一部分参与水化形成水化产物钙矾石,其余部分被水化产物所包裹起集料骨架作用。  相似文献   

9.
研究了高钙粉煤灰水泥的细度及活性激发剂对其物理性能的影响。研究结果表明,高钙粉煤灰水泥的安定性和各龄期的抗折、抗压强度均随着水泥的细度的提高和活性激发剂的掺入而提高,活性激发剂具有加速水泥矿物和f Ca O 水化的作用。采用525# 熟料,掺加30% 的高钙粉煤灰时,水泥的比表面积在340~400 m 2 /kg 和掺入1% 的活性激发剂,能够稳定生产425# 高钙粉煤灰水泥。  相似文献   

10.
低水胶比下工业废渣与水泥熟料的相互作用   总被引:1,自引:0,他引:1  
探索了工业废渣与水泥熟料相互作用的定量指标.以掺惰性材料———刚玉粉的水泥水化样作参比样,研究和分析了低水胶比下粉煤灰、煤矸石与水泥熟料的相互作用.实验中粉煤灰掺量为10%~80%,煤矸石掺量为20%~60%,龄期为1~672 h.结果表明,水泥中掺入粉煤灰和煤矸石,由于水泥熟料用量降低而产生的稀释作用促进了水泥熟料的水化,而其他物理化学作用则依工业废渣的掺量、水化样龄期的不同而表现为促进或延缓水泥熟料的水化.  相似文献   

11.
循环流化床燃煤固硫灰渣含有较高的SO3和f-CaO,常温下水化时易产生较大的体积膨胀。研究了蒸压养护和自然养护下,2种固硫灰和1种固硫渣的线性膨胀率和强度发展,并用X射线衍射和SEM分析了其水化产物,结果表明:蒸压养护对固硫灰渣的膨胀有显著的抑制作用;蒸压养护后固硫灰渣中无二水石膏、钙矾石生成,在钙组分充足时生成了托贝莫来石;蒸压养护后固硫灰渣的水化产物更加丰富、结晶更完善,从而强度更高。  相似文献   

12.
利用高钙粉煤灰生产粉煤灰水泥的试验研究   总被引:3,自引:0,他引:3  
研究了高钙粉煤灰水泥的细度及活性激发剂对其物理性能的影响。研究结果表明,高钙为分煤灰水泥的安定性和各龄期的抗折、抗压强度随着水泥的提高和活性激发剂的掺入而提高,活性激发剂具有加速水泥矿物和f-CaO水化的作用,采用525熟料,掺加30%的高钙粉煤灰时,水泥的比表面积在340-400m^2/kg和掺入1%的活性激发剂,能够稳定性生产425高钙粉煤灰水泥。  相似文献   

13.
选择高碱性的钢渣和中、微酸性的铁板砂,利用两种混合材性能的互补效应生产复合水泥,研究了钢渣、铁板砂的化学成分、矿物组成和粉磨特性,探讨了复合水泥中钢渣细度和掺量对抗压强度、抗折强度的影响规律,以及熟料、钢渣、铁板砂和石膏体系的水化反应机理及物理性能.结果表明:铁板砂的易磨性远好于钢渣,复合水泥最佳配合比取值为:熟料40%、钢渣35%、铁板砂20%,其各项性能指标均可满足42.5R的国家标准要求.  相似文献   

14.
研究了外掺 Ca(OH)_2和 CaSO_4·2H_2O 对粉煤灰水泥强度的影响,并根据 X-射线定量、热分析和扫描电镜观察以及三甲基硅烷化试验结果进行解释。外掺 Ca(OH)_2降低粉煤灰水泥早期强度。虽然它可稍提高粉煤灰的反应率,但其反应率很低,除掺入量为5%者外,90天龄期的强度均稍低于未掺者。掺 CaSO_4·2H_2O 也使粉煤灰水泥早期强度降低,但掺量为2和4%者赶上不掺CaSO_4·2H_2O 的 4-28天强度所有掺 CaSO_4·2H_2O 的强度都超过90天龄期的未掺者。外掺的 CaSO_4·2H_2O 在28天内耗尽,由于生成钙矾石填充毛细孔空间而使结构致密后期强度提高。在采用相同体积水固比的情况下,无论掺还是不掺 Ca(OH)_2和 CaSO_4·2H_2O的粉煤灰水泥,其90天强度均低于纯波特兰水泥。在采用相同重量水固比时,后期强度赶上和超过波特兰水泥,不完全是粉煤灰的火山灰反应和形成钙矾石的结果,另一重要原因是粉煤灰和 Ca(OH)_2以及 CaSO_4·2H_2O 的比重小而使浆体初始总孔隙率低。三甲基硅烷化试验结果表明,粉煤灰中的 SiO_2主要以多聚物形式存在,单聚物只占8%左右,这可能是粉煤灰活性低的原因之一。外掺 Ca(OH)_2和 CaSO_4·2H_2O 的粉煤灰水泥浆体,60天龄期的单聚物减少而三聚以上的多聚物增多。  相似文献   

15.
研究了石膏掺量对硫铝酸钙改性硅酸盐水泥(SMP)物理力学性能、凝结硬化、体积稳定性等影响,并借助XRD、SEM等测试技术手段研究分析了其机理。结果表明,混合材种类不同,石膏掺量对SMP水泥强度影响程度则不同。即水泥中SO3由4%增至8%时,不掺混合材的SMP水泥石体积虽存在略大膨胀,但水泥强度仍有较大提高;而掺加矿渣、粉煤灰等混合材后,石膏的掺量至8%时,水泥石存在有害体积膨胀,且尤以掺粉煤灰最为突出。在SMP高硫高碱水化体系中,矿渣、粉煤灰对水泥石力学性能、体积膨胀性、水化产物结构及发展的影响存在较大差异,应根据混合材种类对SMP水泥中石膏掺量进行合理控制,以利于其合理应用。  相似文献   

16.
以不同硬石膏掺量的熟料激发矿渣胶凝材料为研究对象,通过对胶结体强度、水化产物的种类及非蒸发水含量等的分析检测,探讨了石膏对熟料激发矿渣的胶凝性能和水化产物的影响.结果表明:适量硬石膏的掺加能够显著提高熟料激发矿渣胶凝材料的早期胶结强度,最佳石膏掺量下,胶凝材料净浆的3d胶结强度可提高95%,细粒尾矿砂浆的3d胶结强度可提高388%.石膏的加入显著促进了钙矾石(AFt)和低钙硅比水化硅酸钙(CSH)在水化早期的优先生成,加快了Ca(OH)2的消耗、抑制了水化铝酸钙(C4AH13)的生成,使3d水化产物中非蒸发水的质量分数由9.23%提高到14.35%.  相似文献   

17.
通过对马钢钢渣粉化学成分、X-射线衍射原材料分析,探究了钢渣粉对水泥基材料力学性能、体积稳定性的影响。试验结果表明:随着钢渣粉掺量的增加,力学性能下降明显,当掺量为10%时,与空白样相比抗压强度略有下降,当掺量为20%时,抗压强度下降幅度较大;钢渣对水泥基材料体积稳定性影响明显,相同龄期随着钢渣掺量增大,自由膨胀率升高。通过化学成分及扫描电镜分析,f-CaO是导致水泥基材体体积膨胀的根源。  相似文献   

18.
钢渣作为活性掺合料用于混凝土是实现其资源化利用的有效途径。文章基于昆钢钢渣粉具有的潜在活性及与水泥熟料相似的矿物组成,以钢渣粉取代矿渣粉制备C15、C20、C30和C40混凝土,分析了钢渣粉掺入对混凝土性能的影响,针对混凝土的工作性能、力学性能和水化产物,利用扫描电镜(SEM)和X射线衍射(XRD)等手段对掺钢渣粉混凝土的流动性、塌落度损失、泌水率、抗压强度、抗拉强度以及净浆水化产物等进行研究。结果表明:钢渣粉与矿渣粉复掺有利于提高混凝土的流动性、延缓了塌落度损失,降低了混凝土的滞后泌水,并满足了力学强度的设计要求;钢渣粉的掺入,水化产物种类没有改变,钢渣粉早期水化速度较慢,后期水化程度逐渐提高。  相似文献   

19.
钢渣-矿渣-水泥复合胶凝材料的水化性能和微观形貌   总被引:1,自引:0,他引:1  
通过测定矿渣和钢渣部分取代水泥构成的钢渣-矿渣-水泥复合胶凝材料(SBC-CCM)的物相组成和80h内的水化热,研究了SBC-CCM试样的微观形貌和水化性能,并用正交试验结果分析了SBC-CCM中钢渣-矿渣的最佳掺量和比例。结果表明:SBC-CCM的水化过程和水化产物的物相组成与硅酸盐水泥的相似,矿渣在水化早期参与反应,钢渣在水化早期呈惰性;SBC-CCM的80h水化放热量和放热速率均低于水泥相应的数值;正交试验结果表明水胶比对SBC-CCM强度的影响最显著,矿渣-钢渣的最佳质量比为2∶1。  相似文献   

20.
混合材对高铝水泥强度影响的试验研究   总被引:3,自引:0,他引:3  
研究了石灰石、粉煤灰 ,矿渣三种矿物混合材不同掺量对高铝水泥强度的影响 .分析了它们在高铝水泥水化过程中的作用和水化产物的微观形貌 ,以及对高铝水泥水化产物晶型转变的影响 .研究表明 :对于高铝水泥净浆试件 ,掺适量的石灰石能够抑制高铝水泥水化产物的晶型转变 ,并能够生成单碳型水化碳铝酸钙 (C3 A·CaCO3 ·11H2 O) .但掺合粉煤灰和矿渣的作用效果不明显 ,对于高铝水泥胶砂试件 ,掺加适量的三种混合材都有利于高铝水泥强度的稳定 ,其中石灰石的作用效果较为明显 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号