首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
The austenitic stainless steel's remarkable mechanical properties are caused by twinning-induced plasticity and transformation-induced plasticity mechanisms. Numerous studies focus on stacking fault energy's effect, which is affected by various factors, to interpret and control these mechanisms. However, crystallographic orientation is also an important parameter for mechanical properties in metals. This study compares the mechanical properties and microstructural features of 304 austenitic stainless steel, focusing on the effect of initial texture and deformation temperature. Microstructural characterization is identified by an interrupted tensile test based on strain, tensile direction, and temperature conditions, and X-ray diffraction and electron back-scattered diffraction analysis are performed. The results show that the mechanical features and strain-induced martensitic transformation rate depend on the tensile directions. In addition, this trend is maintained irrespective of the temperature conditions. The attribute reason is that the difference in the Taylor factor and the formation rate of the deformed band structure is induced by the initial crystallographic orientations. Moreover, a decrease in temperature significantly increases the dislocation densities and abundant twins and transformed martensites formation. Furthermore, the yield and tensile strengths are enhanced while the elongation decreased with the tensile strains.  相似文献   

4.
杨卓越  苏杰  陈嘉砚  熊建新 《钢铁》2007,42(5):61-64,78
用X射线衍射技术研究了304奥氏体不锈钢变形诱发马氏体相变倾向对成分的敏感性.在液氮内的拉伸结果表明: C、Mn、Cr和Ni的含量从标准范围的上限降到下限,显著增大形变诱发马氏体相变倾向和形变强化能力,尤其是C、Mn、Cr和Ni的含量接近下限的钢在室温下拉伸形成ε马氏体和α'马氏体,其中α'马氏体快速形成使流变应力迅速上升;此外发现,在液氮温度下,变形早期ε马氏体与α'马氏体同时存在,α'马氏体的体积分数累积到约70%后,ε马氏体消失.  相似文献   

5.
6.
设计了两种不同的拉拔工艺(减面率/%:工艺一:34.45,31.67,19.00,20.08;工艺二:20.10,19.28,34.64,31.41),研究了道次减面率配置对304H不锈钢丝拉拔过程中马氏体相变、磁性能及力学性能的影响。结果表明:当钢丝总应变量相同时,大减面率配置在前更有利于马氏体转变,其饱和磁化强度更大,反之则马氏体转变量较少,饱和磁化强度较小。钢丝的强度与拉拔真应变呈线性相关,其大小只与拉拔总应变量相关。本试验中,前两个道次减面率为20.10%和19.28%,后两个道次减面率为34.64%和31.41%时,马氏体转变量较少,钢丝的饱和磁化强度较低。  相似文献   

7.
应用马氏体转变分析方法,对304不锈钢冷轧板拉深应变试验过程中拉深件各个区域的应变分布规律、马氏体转变分析、壁厚、硬度变化历史进行了研究;分析304不锈钢冷轧板性能对拉深件应变的影响及用户开裂水槽的应变分布特点;提出了确定拉深成形零部件危险部位的方法和改进措施.  相似文献   

8.
 A comparative study on mechanical properties and microstructure of 316L austenitic stainless steel between solution treated specimen and hot rolled specimen was conducted. After a specimen was subjected to solution treatment at 1050 ℃ for 6 min, its mechanical properties were determined through tensile and hardness tests. Based on the true stress vs true strain and engineering stress vs engineering strain flow curves, the work hardening rate has been explored. The results show that the solution treated specimen has an excellent combination of strength and elongation, and that this steel is easy to work-hardening during deformation. Optical microscope, scanning electron microscope, transmission electron microscope and X-ray diffraction examinations were conducted, these reveal that twins in 316L austenitic stainless steel can be divided into suspended twin and transgranular twin which have different formation mechanisms in growth, and that the deformation induced martensite nucleated and grown in the shear band intersections can be observed, and that the fracture surfaces are mainly composed of dimples and exhibit a tough fracture character.  相似文献   

9.
 通过WS-4非自耗真空电弧炉熔炼制备了加Al 2%~10%(wt)的不锈钢316L,用光学金相显微镜观察了金相组织,用EPMA-1600电子探针分析了组织中各元素的分布,结合D8 ADVANCE 型X射线衍射确定了合金中的基体相组成,并研究了室温压缩性能和硬度。结果表明,随着铝含量增加,碳化物由连续条状转变为质点状;Al元素固溶于合金基体中,当Al含量小于6%(设计成分中所含Al. wt%)时,基体相为γ相;当Al含量大于6%(设计成分中所含Al. wt%)时,基体相转变为α相,此时合金脆性大幅提高,合金由塑性材料转变为脆性材料。  相似文献   

10.
 Martensitic stainless steel containing Cr of 12% to 18% (mass percent) are common utilized in quenching and tempering processes for knife and cutlery steel. The properties obtained in these materials are significantly influenced by matrix composition after heat treatment, especially as Cr and C content. Comprehensive considered the hardness and corrosion resistance, a new type martensitic stainless steel 6Cr15MoV has been developed. The effect of heat treatment processes on microstructure and mechanical properties of 6Cr15MoV martensitic stainless steel is emphatically researched. Thermo-Calc software has been carried out to thermodynamic calculation; OM, SEM and TEM have been carried out to microstructure observation; hardness and impact toughness test have been carried out to evaluate the mechanical properties. Results show that the equilibrium carbide in 6Cr15MoV steel is M23C6 carbide, and the M23C6 carbides finely distributed in annealed microstructure. 6Cr15MoV martensitic stainless steel has a wider quenching temperature range, the hardness value of steel 6Cr15MoV can reach to HRC 608 to HRC 616 when quenched at 1060 to 1100 ℃. Finely distributed carbides will exist in quenched microstructure, and effectively inhabit the growth of austenite grain. With the increasing of quenching temperature, the volume fraction of undissolved carbides will decrease. The excellent comprehensive mechanical properties can be obtained by quenched at 1060 to 1100 ℃ with tempered at 100 to 150 ℃, and it is mainly due to the high carbon martensite and fine grain size. At these temperature ranges, the hardness will retain about HRC 592 to HRC 616 and the Charpy U-notch impact toughness will retain about 173 to 20 J. A lot of M23C6 carbides precipitated from martensite matrix, at the same time along the boundaries of martensite lathes which leading to the decrease of impact toughness when tempered at 500 to 540 ℃. The M3C precipitants also existed in the martensite matrix of test steel after tempered at 500 ℃, and the mean size of M3C precipitates is bigger than that of M23C6 precipitates.  相似文献   

11.
In order to improve the low ductility of nanostructured materials,a layered and nanostructured (LN) 304 SS (stainless steel)is prepared from warm co-rolled 304 SS pre-treated by surface mechanical attrition treatment.The microstructure and mechanical properties,as well as strain hardening,are analyzed in details.The LN steels exhibit both high strength and large ductility resulting from good strain hardening behaviors.The strain hardening can be subdivided into two stages,which involves a multiple cracking along interlaminar at the first stage and a strain-induced martensite(SIM)transformation at the second stage.The SIM transformation of nanocrystallines and ultrafine grains induces a larger work hardening exponent by the formation of nanoscaled martensite phase.The effect of grain size on the transformation dynamics is discussed.  相似文献   

12.
13.
Dynamic recrystallization of 304N stainless steel was investigated at deformation temperatures of 900–1300 °C and strain rates of 0.01–10 s?1 by a Gleeble-1500 thermo-mechanical simulator. And the microstructure evolutions of specimens with different deformation temperatures were observed by using a transmission electron microscope. Results indicated that compared with conventional AISI 304 austenitic stainless steel, 304N stainless steel has higher deformation resistance force and deformation activation energy under similar conditions. In addition, the flow stress constitutive equation of 304 N stainless steel was obtained by regression analysis of experimental stress-strain data, and the calculated values proposed by the mathematical model agree well with the experimental results.  相似文献   

14.
利用X射线衍射方法,研究了304L不锈钢中电解充氢过程和随后时效过程中的氢致奥氏体结构变化和氢致马氏体相变。结果表明,电解充氢可导致奥氏体晶格膨胀和马氏体相变,α’相和ε相同时出现,并且在室温时效过程中并不能消失。  相似文献   

15.
采用室温拉伸及硬度测试研究了不同的冷变形量对316L不锈钢室温力学性能及硬度的影响,并通过OM、TEM对冷变形后组织结构的观察,分析讨论了不同变形后力学性能及硬度的变化机制.结果表明,冷变形使材料的强度和硬度得到大幅度提高,但塑性有所降低.冷变形量为25%时,钢的屈服强度可达到745 MPa,同时伸长率达到19.3%.随冷变形量的不同,该钢加工硬化能力不同.变形量低于2.5%时,强度、硬度增加的速度较快,而变形量高于约2.5%后,强度、硬度增加的速度却相对较小,其原因是变形机制不同.另外,冷变形后钢的屈服强度与硬度有着相似的变化规律,由此提出了由冷变形后硬度变化预测冷变形后拉伸屈服强度的方程.  相似文献   

16.
 Abstract: The effects of cold deformation on the formation of strain induced α′ martensite and mechanical properties of an austenitic stainless steel have been examined. X-ray diffraction analysis has revealed that 30% and 40% cold rolling have resulted in the formation of 24% and 315% martensite respectively. Microstructural investigation has demonstrated that the formation of martensite is enhanced with increase in the percent deformation at 0 ℃. Investigation of mechanical properties reveals that hardness, yield strength and tensile strength values increase where as percent elongation drops with increasing deformation. The fractographic observation corroborates the tensile results. Examination of sub-surface at the fractured end of the tensile sample manifests that void/microcrack nucleation occurs in the interfacial regions of the martensite phase as well as at the austenite-martensite interface.  相似文献   

17.
18.
对原位合成TiC强化304不锈钢的显微组织和性能进行了研究。试验结果表明:在304不锈钢中产生TiC颗粒后,热处理态组织中的孪晶得到明显细化,同时出现了很多纳米级的未固溶的方形颗粒Cr23C6和圆形颗粒TiC。TiC颗粒的产生,使304不锈钢强度有较大提高而塑性有一定的下降。在TiC强化钢磨损过程中,TiC颗粒暴露于磨损表面起承载和形成油膜的作用,从而保护基体不发生严重磨损。随着钢中TiC含量的增加,强度和磨损性能的提高越明显。  相似文献   

19.
20.
It is crucial to conduct in-depth research on the cryogenic-treatment mechanism to promote the standardization and industrialization of cryogenic treatment in the high-speed steel (HSS) industry. In this study, the microstructure and mechanical properties (microhardness and impact toughness) of AISI M35 HSS after deep-cryogenic treatment (DCT) and conventional heat treatment (CHT) are investigated, and the microstructural characteristics at different stages of CHT and cryogenic treatment are studied. It is indicated in the results that DCT of the steel leads to the formation of fresh martensite from residual austenite, as well as the introduction of more dislocations due to plastic deformation. In addition, the deep-cryogenic-treated specimen that is tempered shows increased numbers of martensite blocks and secondary carbide precipitation. The carbides in the steel are mainly V-rich (MC), W–Mo-rich (M6C), and Cr-rich (M23C6). The hardness of the deep-cryogenic-treated samples increases by approximately 50 HV1 because of the transformation of residual austenite and dislocation strengthening. Furthermore, specimens that are both deep-cryogenic treated and tempered exhibit a 30% increase in impact toughness and a more uniform distribution in hardness, likely due to the more homogeneous precipitation of secondary carbides and refinement of martensite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号