首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
《中国钨业》2009,(3):42-42
钼合金、钨合金圆片涉及一种电力半导体器件及电真空器件中的基片(俗称圆片)。主要是为解决现有的用钼制作的圆片只能制作普通的电力半导体器件及电真空器件。而用钨制作的圆片加工困难的问题而研制的。该发明的钼合金圆片是用钼钨合金或TZM合金或稀土钼合金制成的:钨合金圆片是用钨钼合金或钨钍合金或稀土钨合金或钨铼合金制成的。优点是加工比较容易,性能比现有的钼圆片优越,可用于制作高档的电力半导体器件及电真空器件。  相似文献   

2.
钼钨合金的组织和性能研究   总被引:1,自引:0,他引:1  
本文研究了钼钨合金的粉末制备和烧结工艺,得到了相对密度大于96%且成分组织均匀的钼钨合金。通过对比Mo-50W合金与钨合金的断口形貌和力学性能,得出Mo-50W合金具有比工业生产钨合金更高的致密度和强度。  相似文献   

3.
1、掺钼高强度重合金 这是美国新研制成功的一种高强度钨基合金。这种合金的硬度大于HRC44,可用作穿甲弹。从钼-镍以及钼-铁的两元相图(从略)可明显看出:在重合金液相钨烧结温度下,钼的溶解度比较大,钨和钼在整个合金成分范围内完全相互固溶。若将钼添加到典型的90W-7Ni-3Fe重合金系中,就形成一种独特的现象,即钼与固体和基体互溶,其结果是钼均匀地分布在钨晶粒和基体中。  相似文献   

4.
<正> 钼及其合金的发展钼的应用主要是作为钢铁合金的添加剂,一般占钼总量的80—90%。除此以外,钼还用作纯钼制品和耐热钼基合金。近几年来,由于科学技术的发展,不仅对纯钼和钼基合金的需求量愈来愈大,而且对性能的要求也越来越严格了。钼和钼合金主要采用粉末冶金、真空电弧熔炼和电子束熔炼等方法生产。与钨及钨合金的生产一样,随着冷等静压、热等静压、大型烧结炉及轧机的应用,粉末冶金方法已成为生  相似文献   

5.
粉末冶金钨钼材料发展的国内外近况   总被引:16,自引:1,他引:16  
本文从钨、钼金属及其合金,高比重钨合金,钨铜类复合材料三方面介绍了国内外近年来的发展情况,讨论了应用及市场发展潜力。  相似文献   

6.
针对某氧化钼钨粗精矿高压碱浸后得到的浸出液钼钨含量均较高、钼钨分离困难的特点,确定了钼钨浸出液镁盐净化除杂、钼钨共沉淀、干燥、钼钨酸铵制备的工艺流程,主要考察了氯化铵用量、沉淀时间、pH、温度、溶液浓度对钼沉淀率的影响。结果表明,最终获得的产品含Mo 47.57%、WO310.13%,杂质磷、砷分别为0.0027%、0.041%,产品符合生产钨钼合金的要求。  相似文献   

7.
郑鲁 《中国钼业》1993,(1):18-33
本文简要介绍了含钼(包括钨)高温合金的发展,钼在高温合金中的强化机制及作用.我国及世界主要高温合金生产国家的高温合金系列.  相似文献   

8.
1 前言随着工业的发展,高熔点金属钼钨合金的研究及应用引起了人们的重视,目前已生产的钼钨合金有 M-30W-0.02C,Mo-25W-0.1Zr-0.05C,Mo-50W-1.25Ti-0.3Zr-0.15C等,部分性能见图1,图2。由于 Mo-30W 合金有比纯钼好得多的强度、硬度和耐蚀性能,在宇航、冶金等部门得到广泛地应用。  相似文献   

9.
本文系统总结了钼及钼合金焊接技术的研究现状和最新进展,分别介绍了近年来电子束焊、钨极氩弧焊、激光焊、电阻焊、钎焊和摩擦焊等6种焊接技术应用于钼及钼合金焊接所取得的进展和发现的问题,论述了各种焊接技术的特点,结合钼合金焊接性特点对各种焊接技术应用于钼及钼合金焊接的发展前景进行了分析和展望。  相似文献   

10.
在95wtW-3.5wt%Ni-1.5wt%Fe粉末混合料中加入纯钼粉,经成型烧结后,发现当钼的加入量超过1wt%时,能提高合金的强度,而合金的延伸率、截面收缩率及密度降低,合金的钨晶粒细化,钼溶解在基体相及钨相中,有固溶强化的作用。  相似文献   

11.
Worldwide consumption of tungsten and molybdenum was 44 000 tonne and 97 000 tonne, respectively, in 1988. But only a small percentage of this volume is processed to pure or alloyed semifinished or finished products. Some 6% of all molybdenum consumed (5000 to 5500 tonne) is in the form of molybdenum and molybdenum alloys. For tungsten this percentage is higher, 10% of tungsten consumed was pure tungsten or tungsten alloy products. The same amount was produced as heavy metal every year, totalling 8000–9000 tonnes of tungsten content in tungsten and tungsten based alloys including heavy metal, says Ralf Eck of Metallwerk Plansee.  相似文献   

12.
Chromium, molybdenum, tungsten, and tantalum have been compared with each other in regard to their influence on the occurrence of Σ phase in cast nickel-base superalloys. The compositions of the alloys were similar to the chromium-enriched matrix of alloys strengthened by λ′ precipitate, but with systematic variations in refractory-metal content. To induce precipitation of Σ phase, the alloys were aged for 3000 h at 1400?F (760?C), 1550?F (845?C), and 1700?F (925?C). Quantities of Σ phase were determined with the aid of an image-analyzing computer. On an atomic percentage basis, molybdenum, tungsten, and tantalum are equivalent with regard to the minimum concentration of each element that is necessary to cause Σ phase precipitation in 3000 h; their potency is slightly more than twice as high as that of further chromium additions above the 37.5 at. pct base chromium level. At higher refractory metal concentrations, somewhat greater quantities of Σ phase are formed by specific atomic concentrations of molybdenum and tungsten than by tantalum. Tantalum also forms large quantities of a tantalum-containing Μ phase in the as-cast ingot and a (Ni, Co)3Ta phase on aging, the volume of all precipitate being much higher than the quantity of Σ phase for the molybdenum- and tungsten-containing alloys. At any given atomic concentration of molybdenum, tungsten, or tantalum, considerably larger quantities of Σ phase are formed than by a given increment of chromium above the 37.5 at. pct base chromium concentration in Mo-W-Ta-free alloys.  相似文献   

13.
Effects of molybdenum and tungsten on carbon activity in nickel have been experimentally determined at 1000, 1100, and 1200 °C. Seventeen nickel-molybdenum and thirteen nickel-tungsten binary alloys were carburized in a flow of purified methane and hydrogen mixed gas. A sealed capsule technique was also employed for carburization of a few series of nickel-molybdenum alloys. The carbon concentration was determined either by hot extraction techniques (LECO and Coulomatic) or by weight gains of these specimens. The carbon concentration at a constant carbon activity decreases with increasing either molybdenum or tungsten concentration in nickel. The effect of tungsten on the carbon solubility in nickel is slightly larger than that of molybdenum. The experimental data were analyzed in terms of the regular solution model with two sublattices due to Hillert and Staffansson. Temperature dependence of the interaction coefficients between carbon and molybdenum or tungsten was expressed as DGMo/RT = −4.45 + 11650/T andDG W /R = 1.21 + 9010/. Formerly Graduate Student, Department of Metallurgical Engineering, Tokyo Institute of Technology Formerly Professor, Department of Metallurgical Engineering, Tokyo Institute of Technology  相似文献   

14.
    
Chromium, molybdenum, tungsten, and tantalum have been compared with each other in regard to their influence on the occurrence of Σ phase in cast nickel-base superalloys. The compositions of the alloys were similar to the chromium-enriched matrix of alloys strengthened by λ′ precipitate, but with systematic variations in refractory-metal content. To induce precipitation of Σ phase, the alloys were aged for 3000 h at 1400‡F (760‡C), 1550‡F (845‡C), and 1700‡F (925‡C). Quantities of Σ phase were determined with the aid of an image-analyzing computer. On an atomic percentage basis, molybdenum, tungsten, and tantalum are equivalent with regard to the minimum concentration of each element that is necessary to cause Σ phase precipitation in 3000 h; their potency is slightly more than twice as high as that of further chromium additions above the 37.5 at. pct base chromium level. At higher refractory metal concentrations, somewhat greater quantities of Σ phase are formed by specific atomic concentrations of molybdenum and tungsten than by tantalum. Tantalum also forms large quantities of a tantalum-containing Μ phase in the as-cast ingot and a (Ni, Co)3Ta phase on aging, the volume of all precipitate being much higher than the quantity of Σ phase for the molybdenum- and tungsten-containing alloys. At any given atomic concentration of molybdenum, tungsten, or tantalum, considerably larger quantities of Σ phase are formed than by a given increment of chromium above the 37.5 at. pct base chromium concentration in Mo-W-Ta-free alloys.  相似文献   

15.
稀土金属冶炼用新型钨钼材料的研制   总被引:2,自引:0,他引:2  
曾建辉 《稀土》1999,20(5):3
本文从稀土金属冶炼用新型钨钼材料的研制着手,研究了添加几种微量稀土氧化物对钨钼材料高温、无保护性气氛下的抗氧化性。研究发现,微量稀土氧化物的添加,减慢了钨钼材料的氧化速度,较大地提高了钨钼材料的抗氧化能力。由于钨钼材料性能的改善,可使稀土冶金、玻璃、纤维等行业用的钨钼材料寿命延长、成本降低。研究表明,使用添加氧化铈、氧化钇、氧化镧的新型钨钼材料,可减少被提炼金属中的钨钼含量,使质量提高,品种上档次,满足日益发展的国内外稀土市场的要求。  相似文献   

16.
钼及其合金具有优异的高温力学性能,被广泛应用于冶金、机械、化工、航空和核工业等领域。粉末冶金是钼合金的主要制备方法。通过固溶强化、第二相强化、细晶强化等多种强化手段可以提高钼合金的力学性能,从而拓宽钼合金的应用范围。本文介绍了粉末冶金制备钼合金的研究进展,包括粉体制备方法、压制工艺及坯体烧结工艺等,讨论了钼合金的强韧化方法及其机理,并展望了粉末冶金法制备钼合金的发展方向,以期对钼合金的设计和制备提供一些思路。  相似文献   

17.
自蔓延高温合成法制备无钨硬质合金   总被引:1,自引:0,他引:1  
用SHS同时致密化工艺制备的无钨硬质合金具有优异的性能,可以在很多应用领域中替代传统的WC-Co硬质合金,本文综述了SHS工艺合成无钨硬质合金的种类、性能、工艺条件、应用及发展前景。  相似文献   

18.
Comprehensive analysis of experimental data for the high-temperature mechanical properties of commercial purity tungsten, molybdenum, and their alloys with solid solution, dispersion, and mixed hardening prepared by powder metallurgy with different forms of uniaxial tension is provided. It was established that for materials of this class at high temperature (0.5–0.8 Tm) there is a close correlation between short-term and static stress-rupture strength, and creep resistance, which is described by unified functional dependences that are common for all of the metals and alloys studied. Institute of Strength Problems, Ukraine National Academy of Sciences, Kiev. Translated from Poroshkovaya Metallurgiya, Nos. 7–8(408), pp. 93–99, July–August, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号