首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于COSMOS/Works的塑料斜齿轮与钢制蜗杆啮合特性研究   总被引:1,自引:0,他引:1  
郝一舒  李磊 《机械设计》2007,24(2):56-59
阐述了塑料斜齿轮与钢制蜗杆的啮合特性,建立基于SolidWorks的渐开线齿廓模型,以实现高副配合.运用有限元方法,模拟齿轮在100 ℃环境温度下的应力应变状态与塑料斜齿轮齿廓变形过程,从而得出了塑料斜齿轮啮合的变化规律.通过赫兹压力理论验证基于COSMOS/Works进行有限元分析的正确性.  相似文献   

2.
塑料斜齿轮与钢制蜗杆啮合力变化规律的研究   总被引:1,自引:0,他引:1  
为了研究塑料斜齿轮与钢制蜗杆在传动过程中齿面的受力情况,建立了考虑齿间载荷分配的塑料斜齿轮与钢制蜗杆啮合副力学模型,并利用齿轮啮合过程中的变形协调关系,计算得到了塑料斜齿轮齿面接触点啮合力在连续啮合过程中的变化规律。同时也利用ANSYS Workbench有限元软件对塑料斜齿轮与钢制蜗杆的啮合力进行了仿真分析,分析结果显示采用本文方法计算结果与有限元仿真结果吻合良好,验证了本文方法的合理有效。研究表明,塑料斜齿轮齿面在正常啮合过程中的最大啮合力出现在靠近齿根处的少齿啮合区,塑料斜齿轮在此处容易发生磨损和疲劳破坏。所提方法实现了对塑料斜齿轮与钢制蜗杆啮合力的快速计算,可为工程中齿轮设计以及提高齿轮承载能力提供一定的参考。  相似文献   

3.
《机械强度》2017,(1):143-148
为研究某新型汽车门锁中的塑料斜齿轮在工作条件下的轮齿受力情况,运用Abaqus建立了斜齿轮啮合的有限元模型,基于非线性接触算法对塑料斜齿轮的接触过程进行了仿真分析,并得到塑料斜齿轮的接触应力与弯曲应力。运用刘易斯方程及齿轮赫兹应力理论对塑料斜齿轮啮合过程中的许用应力进行了理论计算,并与有限元仿真结果进行对比;结果验证了塑料齿轮的强度满足实际工作的要求,并指出齿轮正常啮合过程中最大接触应力出现在齿轮双齿啮合区间,而最大弯曲应力发生在两齿啮合即将进入三齿啮合位置,此时齿轮容易发生疲劳破坏,提出了提高齿轮轮齿强度的改进方案。研究为塑料齿轮的强度分析提供了理论依据。  相似文献   

4.
利用ANSYS-APDL参数化建模,建立可以考虑不同齿顶修缘量的斜齿轮啮合模型。通过赫兹接触理论和摩擦学原理,计算有限元模型的边界条件和载荷,得到齿轮副本体温度场的分布。将齿轮本体温度场作为体载荷施加在啮合齿轮副上,分别对齿轮系统进行结构分析、热变形分析以及热弹耦合分析。通过对比结构分析和热弹耦合分析结果中齿轮变形和应力分布以及传动误差的分布,研究齿轮系统温度场对齿轮接触特性的影响,确定考虑齿轮系统热变形的齿廓修形参数。将修形前后齿面温度场的分布结果以及热弹耦合分析结果进行对比。结果表明轮齿热变形对啮合性能影响显著,因此修行时应考虑齿轮热变形影响。  相似文献   

5.
齿廓方向修形的斜齿面齿轮啮合特性研究   总被引:7,自引:0,他引:7       下载免费PDF全文
主要研究了修形面齿轮副传动的啮合特性.提出了一种沿齿廓方向抛物线修形的面齿轮齿面结构,对传统斜齿面齿轮和修形的斜齿面齿轮副的啮合进行了比较.计算机仿真表明,修形的斜齿面齿轮传动啮合性能明显改善,接触路径沿两齿面齿长方向分布,有效避免了边缘接触;啮合区域对安装误差较为敏感,特别是轴夹角误差的大小,对啮合印痕在齿面上分布的影响尤其明显,容易导致接触区域向面齿轮的大端和小端偏移.  相似文献   

6.
核电齿轮箱的良好润滑性能是核电循环泵可靠运行的重要保障,充分考虑齿面形貌和齿廓修形等因素对内/外啮合齿轮副的影响是准确评估其润滑特性的前提。建立典型工况下核电循环泵行星传动系统斜齿轮热弹流润滑模型,首先将斜齿轮副的啮合状态几何等效为圆锥滚子的接触问题,然后考虑斜齿轮接触变形和齿廓偏差,计算得到内/外啮合齿轮副接触区域不同位置的油膜厚度、承载压力、摩擦应力和闪温等参数。考虑齿面磨合作用,采用移动平均滤波方法对未经磨合的初始形貌进行光滑处理,分析了齿面形貌对润滑行为的影响,最后采取齿廓修形改善润滑特性。结果表明:粗糙度和齿廓修形均会对润滑特性产生明显的影响,齿面粗糙形貌会造成油膜厚度减小,进而影响其润滑特性,弱化润滑油膜的承载能力;通过齿廓修形可以改善齿轮啮合边界处的几何过渡,降低该区域的应力集中和表面温度,从而明显改善啮合线终端的润滑状态。  相似文献   

7.
渐开线斜齿圆柱齿轮齿面接触强度分析   总被引:1,自引:0,他引:1  
斜齿圆柱齿轮在啮合过程中,其啮合接触线的总长度不是定值,而该值将影响啮合过程中轮齿间的线载荷,因此分析了斜齿轮对在一个啮合周期内的接触线总长度的变化规律。目前将斜齿轮转化为当量直齿轮计算齿轮齿面接触强度,无法反映啮合瞬时齿面接触应力分布情况。将啮合接触线两侧的斜齿轮轮齿对看做曲率半径不断变化的圆锥台体,并结合斜齿轮啮合原理、赫兹弹性接触理论,通过解析法计算轮齿对任意啮合时刻的齿面接触强度,并分析了轮齿对一个啮合周期内齿面接触强度的变化规律。通过有限元分析软件,对解析法的计算结果进行了验证。  相似文献   

8.
为研究斜齿轮副啮合过程中螺旋角与驱动扭矩对斜齿轮副动力学特性的影响,建立了基于时变啮合刚度与齿侧间隙的斜齿轮副6自由度弯扭轴耦合动力学模型.利用斜齿轮副瞬时接触线,计算理论时变啮合刚度;结合齿侧间隙函数,通过4阶龙格库塔数值积分法,求解斜齿轮副的振动响应,分析螺旋角与工况对斜齿轮副振动响应的具体影响.研究发现,随着螺旋...  相似文献   

9.
在齿轮传动共轭曲线理论研究的基础上,以内啮合曲线构型齿轮传动为对象,推导了沿给定接触角方向的空间共轭曲线副啮合方程,建立内啮合条件下空间共轭曲线副表达式,根据空间等距包络方法构建继承内啮合共轭曲线副特性的啮合齿面,通过改变成型曲面的相对运动位置及等距半径,提出凸齿廓-凸齿廓、凸齿廓-平面和凸齿廓-凹齿廓3种接触型式;以空间圆柱螺旋曲线为例,结合理论分析结果及主要设计参数,建立凸齿廓-凹齿廓内啮合曲线构型齿轮副三维实体模型;定义齿面接触点压力角,给出基于空间共轭曲线的齿面滑动率计算算法,完成内啮合齿面接触迹线计算及分析,后续将对齿面啮合性能、接触力学特性及制造方法进行研究。  相似文献   

10.
高重合度摆线内齿轮副齿面接触强度研究   总被引:1,自引:0,他引:1  
合理的齿轮强度计算是实现齿轮结构设计及优化、保证留有适当裕量的基础。高重合度摆线内齿轮副同时参与啮合的轮齿对数较多,齿根弯曲应力很小,所以只需考虑齿面接触强度问题。基于改进能量法和赫兹弹性理论,推导了理想条件下该齿轮副的时变啮合刚度、齿间载荷分配和齿面接触强度计算模型。鉴于共轭齿廓节点处曲率半径为零,研究了节点附近不参与啮合的齿廓修形区域优化问题,在此基础上,通过将齿轮加工中产生的各种误差及侧隙转化为理论齿廓公法线上的偏移量,分析了不同加工误差对承载特性的影响程度,并在ABAQUS中进行了加载接触有限元分析验证。结果表明,该齿轮副对加工误差(侧隙)非常敏感,即对精度要求很高,为齿面接触强度计算和误差控制提供了技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号