首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We have previously demonstrated that the neuroprotective effect of the beta2-adrenoceptor agonist clenbuterol in vitro and in vivo was most likely mediated by an increased nerve growth factor (NGF) expression. In the present study, we examined whether clenbuterol was capable of inhibiting apoptosis caused by ischemia. Transient forebrain ischemia was performed in male Wistar rats (300 to 350 g) by clamping both common carotid arteries and reducing the blood pressure to 40 mm Hg for 10 minutes. Clenbuterol (0.1, 0.5, and 1.0 mg/kg intraperitoneally) was administered 3 hours before ischemia or immediately after ischemia. The brains were removed for histologic evaluation 7 days after ischemia. The time course of DNA fragmentation was determined 1, 2, 3 and 4 days after ischemia. Staining with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) was used for further analysis of DNA fragments in situ 3 days after ischemia. The NGF protein was assayed by enzyme-linked immunosorbent assay. Ten-minute forebrain ischemia damaged 80% to 90% of the neurons in the hippocampal CA1 region evaluated 7 days after ischemia. Pretreatment with clenbuterol (0.5 and 1.0 mg/kg) reduced the neuronal damage by 18.1% (P < 0.01) and 13.1% (P < 0.05), respectively. The neuroprotective effect also was found when clenbuterol (0.5 mg/kg) was administered immediately after ischemia (P < 0.05). The DNA laddering appeared in striatum 1 day and in hippocampus 2 days after ischemia and peaked on the third day in both regions. The DNA laddering was nearly abolished in the hippocampus and partially blocked in striatum and cortex by 0.5 mg/kg clenbuterol. These results were confirmed by TUNEL staining. Clenbuterol (0.5 mg/kg intraperitoneally) elevated the NGF protein level by 33% (P < 0.05) in the hippocampus and 41% (P < 0.05) in the cortex 6 hours after ischemia. Three days after ischemia, the NGF levels in these regions were no longer different between the clenbuterol-treated and control groups. This study clearly demonstrates that clenbuterol possesses a neuroprotective activity and a marked capacity to inhibit DNA degradation after global ischemia. The results suggest that clenbuterol increases NGF expression during the first hours after global ischemia and thereby protects neurons against apoptotic damage.  相似文献   

2.
The receptor encoded by the W (c-kit) locus is expressed on the membrane of mouse primordial germ cells, whereas its ligand termed stem cell factor (SCF), encoded by the Sl locus, is expressed on the membrane of somatic cells associated with both the primordial germ cell migratory pathways and homing sites. Using an in vitro short time assay which allows a quantitative measure of adhesion between cells, in the present paper we show that SCF/c-kit interaction can modulate primordial germ cell adhesion to somatic cells. We report that the adhesiveness of 11.5 dpc primordial germ cells to four types of somatic cells in culture (TM4 cells, STO fibroblasts, bone marrow stromal cells and gonadal somatic cells) is significantly reduced by antibodies directed against c-kit receptor or SCF, as well by soluble SCF. This SCF/c-kit mediated adhesion seems independent of SCF-induced tyrosine autophosphorylation of c-kit receptor. Moreover, primordial germ cells showed a poor ability to adhere to a bone marrow stromal cell line carrying the Sl(d) mutation (unable to synthesize membrane-bound SCF). This adhesiveness was not further impaired by anti-c-kit antibody. These results demonstrate that SCF/c-kit interaction contributes to the adhesion of primordial germ cells to somatic cells in culture and suggest that the role played by SCF in promoting survival, proliferation and migration of these cells in vitro and in vivo, demonstrated by several studies, might depend on the ability of the membrane-bound form of this cytokine to directly mediate primordial germ cell adhesion to the surrounding somatic cells.  相似文献   

3.
The release of glutamate and GABA in response to K+ depolarization was determined for tissue prisms prepared from brain subregions removed from rats following 30 min of forebrain ischemia or recirculation periods up to 24 h. There were statistically significant effects of this treatment on release of both amino acids from samples of the dorsolateral striatum, an area developing selective neuronal degeneration. However, for at least the first 3 h of recirculation the calcium-dependent and calcium-independent release of both amino acids in this region were similar to pre-ischemic values. Differences were observed under some conditions at longer recirculation times. In particular there was a decrease in calcium-dependent GABA release at 24 h of recirculation and a trend towards increased release of glutamate at 6 h of recirculation and beyond. No statistically significant differences were seen in samples from the paramedian neocortex, a region resistant to post-ischemic damage. These results suggest that changes in the ability to release glutamate and GABA in response to stimulation are not necessary for the development of neurodegeneration in the striatum but rather that release of these amino acids may be modified as a result of the degenerative process.  相似文献   

4.
A new series of 2-arylmethyl-1,4-benzoquinones (2) was synthesized for evaluation of their pharmacological activities. These compounds showed significant inhibition of platelet aggregation induced by arachidonic acid (AA) and some of them possessed a protective effect against endothelial cell injury caused by hydrogen peroxide.  相似文献   

5.
During reperfusion after ischemia, deleterious biochemical processes can be triggered that may antagonize the beneficial effects of reperfusion. Research into the understanding and treatment of reperfusion injury (RI) is an important objective in the new era of reperfusion therapy for stroke. To investigate RI, permanent and reversible unilateral middle cerebral artery/common carotid artery (MCA/CCA) occlusion (monitored by laser Doppler) of variable duration in Long-Evans (LE) and spontaneously hypertensive (SH) rats and unilateral MCA and bilateral CCA occlusion in selected LE rats was induced. In LE rats, infarct volume after 24 hours of permanent unilateral MCA/CCA occlusion was 31.1 +/- 34.6 mm3 and was only 28% of the infarct volume after 120 to 300 minutes of reversible occlusion plus 24 hours of reperfusion, indicating that 72% of the damage of ischemia/reperfusion is produced by RI. When reversible ischemia was prolonged to 480 and 1080 minutes, infarct volume was 39.6 mm3 and 16.6 mm3, respectively, being indistinguishable from the damage produced by permanent ischemia and significantly smaller than damage after 120 to 300 minutes of ischemia. Reperfusion injury was not seen in SH rats or with bilateral CCA occlusion in LE rats, in which perfusion is reduced more profoundly. Reperfusion injury was ameliorated by the protein synthesis inhibitor cycloheximide or spin-trap agent N-tert-butyl-alpha-phenylnitrone pretreatment.  相似文献   

6.
Preischemic hyperglycemia or superimposed hypercapnia exaggerates brain damage caused by transient forebrain ischemia. Because high regional levels of brain-derived neurotrophic factor (BDNF) protein correlate with resistance to ischemic damage, we studied the expression of BDNF mRNA using in situ hybridization in rats subjected to 10 minutes of forebrain ischemia under normoglycemic, hyperglycemic, or hypercapnic conditions. Compared with normoglycemic animals, the increase of BDNF mRNA using in situ hybridization in rats subjected to 10 minutes of forebrain ischemia under normoglycemic, or hypercapnic conditions. Compared with normoglycemic animals, the increase of BDNF mRNA in dentate granule cells was attenuated and that in CA3 pyramidal neurons completely prevented in hyperglycemic rats. No ischemia-induced increases of BDNF mRNA levels in the hippocampal formation were detected in hypercapnic animals. Hyperglycemic and hypercapnic rats showed transiently decreased expression of BDNF mRNA levels in the cingulate cortex, which was not observed in normoglycemic animals. The results suggest that suppression of the BDNF gene might contribute to the increased vulnerability of the CA3 region and cingulate cortex in hyperglycemic and hypercapnic animals.  相似文献   

7.
The generation of nitric oxide (NO) aggravates neuronal injury. (6R)-5,6,7,8-Tetrahydro-L-biopterin (BH4) is an essential cofactor in the synthesis of NO by nitric oxide synthase (NOS). We attempted to attenuate neuron degeneration by blocking the synthesis of the cofactor BH4 using N-acetyl-3-O-methyldopamine (NAMDA). In vitro data demonstrate that NAMDA inhibited GTP cyclohydrolase I, the rate-limiting enzyme for BH4 biosynthesis, and reduced nitrite accumulation, an oxidative metabolite of NO, without directly inhibiting NOS activity. Animals exposed to transient forebrain ischemia and treated with NAMDA demonstrated marked reductions in ischemia-induced BH4 levels, NADPH-diaphorase activity, and caspase-3 gene expression in the CA1 hippocampus. Moreover, delayed neuronal injury in the CA1 hippocampal region was significantly attenuated by NAMDA. For the first time, these data demonstrate that a cofactor, BH4, plays a significant role in the generation of ischemic neuronal death, and that blockade of BH4 biosynthesis may provide novel strategies for neuroprotection.  相似文献   

8.
[3H]Quinuclidinyl benzilate binding properties of cerebral cortex, hippocampus, hypothalamus and brainstem of rats subjected to transient forebrain ischemia or severe hemorrhagic shock were investigated. Maximal binding capacities (Bmax) were not significantly different from control animals in either model. On the other hand, significant increases in binding affinities at all four brain regions in the ischemia-reperfusion group and at hypothalamic and brainstem membranes in the hemorrhagic shock group were observed. Kd values obtained in cortex and hippocampus of animals in shock were similar to control values. It was concluded that in brain ischemia models, the number of brain muscarinic receptors do not change at early stages, but binding affinities increase most likely due to systemic hypotension rather than reperfusion. The well-developed circle of Willis seems to protect cortical and hippocampal muscarinic receptors from hypoxia-induced changes.  相似文献   

9.
The middle cerebral artery (mca) was intraluminally occluded for one hour prior to reperfusion in the rat. Neuronal damage as well as motor imbalance were assessed in both acute and chronic stages with or without neural transplant in the striatum. In acute stage, argyrophil III staining demonstrated "collapsed" dark neurons in the ipsilateral striatum, cortex, reticular thalamus, amygdala and sometimes in the hippocampus. They had shrunken somata and corkscrew-like dendrites. In accordance with the appearance of dark neurons, the immunoreactivity for calpain of endogenous inactive form decreased or disappeared in ischemic areas. In chronic stage, ischemic core area (striatum and cortex) got into porencephaly, and animals made rotations following methamphetamine injection. Neural transplant (fetal striatal cells) was made during 2 to 4 weeks after the ischemia. Once the transplant survived and grew in the striatum, the methamphetamine rotations were attenuated. Using mca ischemic model rats we report here pathophysiological processes that lead to neuronal damage and infarct. Neural transplants into these animals brought partial restoration in motor disturbance, offering a valuable information concerning therapeutic possibility.  相似文献   

10.
Recent studies strongly suggest that oxidative stresses participate in ischemia/reperfusion-induced neurodegeneration. In addition, heme oxygenase (HO) and major histocompatibility complex (MHC) antigens serve as functional molecules against oxidative stress and as self-recognition markers in the immune system, respectively. In this study, we examined the induction of HO and MHC antigens in the rat hippocampus after transient forebrain ischemia. The protein level of HO-1 was significantly enhanced after an episode of ischemia. After ischemia, HO-1 expression was observed early but transiently in the CA1 pyramidal neurons and later but continuously in glial cells. Glial cells expressing HO-1 were predominantly ameboid microglia, but not astrocytes. Ameboid microglia expressing HO-1 were predominantly localized with MHC class II antigens. These results indicate that (1) HO-1 expression in CA1 pyramidal neurons may be harmful, and (2) ischemia induces HO-1 in ameboid microglia that express MHC class II antigens, indicating a very specific microglial stress protein response.  相似文献   

11.
12.
13.
Evoked postsynaptic potentials of CA1 pyramidal neurons in rat hippocampus were studied during 48 h after severe ischemic insult using in vivo intracellular recording and staining techniques. Postischemic CA1 neurons displayed one of three distinct response patterns following contralateral commissural stimulation. At early recirculation times (0-12 h) approximately 50% of neurons exhibited, in addition to the initial excitatory postsynaptic potential, a late depolarizing postsynaptic potential lasting for more than 100 ms. Application of dizocilpine maleate reduced the amplitude of late depolarizing postsynaptic potential by 60%. Other CA1 neurons recorded in this interval failed to develop late depolarizing postsynaptic potentials but showed a modest blunting of initial excitatory postsynaptic potentials (non-late depolarizing postsynaptic potential neuron). The proportion of recorded neurons with late depolarizing postsynaptic potential characteristics increased to more than 70% during 13-24 h after reperfusion. Beyond 24 h reperfusion, approximately 20% of CA neurons exhibited very small excitatory postsynaptic potentials even with maximal stimulus intensity. The slope of the initial excitatory postsynaptic potentials in late depolarizing postsynaptic potential neurons increased to approximately 150% of control values up to 12 h after reperfusion indicating a prolonged enhancement of synaptic transmission. In contrast, the slope of the initial excitatory postsynaptic potentials in non-late depolarizing postsynaptic potential neurons decreased to less than 50% of preischemic values up to 24 h after reperfusion indicating a prolonged depression of synaptic transmission. More late depolarizing postsynaptic potential neurons were located in the medial portion of CA1 zone where neurons are more vulnerable to ischemia whereas more non-late depolarizing postsynaptic potential neurons were located in the lateral portion of CA1 zone where neurons are more resistant to ischemia. The result from the present study suggests that late depolarizing postsynaptic potential and small excitatory postsynaptic potential neurons may be irreversibly injured while non-late depolarizing postsynaptic potential neurons may be those that survive the ischemic insult. Alterations of synaptic transmission may be associated with the pathogenesis of postischemic neuronal injury.  相似文献   

14.
In crustaceans, ecdysteroid production by the molting glands (Y-organs) is negatively regulated by a neuropeptide, molt-inhibiting hormone (MIH). The involvement of cyclic nucleotide-dependent kinases in the mechanism of action of this neuropeptide was investigated with regard to the steroidogenic activity of Carcinus maenas Y-organs. Regardless of the activity level, the major phosphotransferase activity measured in cytosolic fraction was cGMP-dependent, indicating a relatively high cytosolic concentration of cGMP-kinase in these cells. Phosphotransferase activity was nearly twofold higher in the intermolt (low steroidogenic activity) than in premolt (high steroidogenic activity) animals. In vitro incubation of premolt Y-organs with MIH for 1 hr increased by 3.7-fold the cGMP-kinase activity ratio (-cGMP/ +cGMP). Numerous endogenous protein substrates were predominantly phosphorylated in a cGMP-dependent manner in cytosolic, particulate, and membrane fractions. Similar phosphoprotein patterns were observed in both molting stages. By contrast, cAMP-kinase activity, which was low in intermolt Y-organs, increased significantly in the active steroidogenic premolt Y-organs. The increase in cAMP-kinase activity was accompanied by a cAMP-dependent phosphorylation of several specific endogenous proteins. Taken together these results strongly suggest that activation of cGMP-kinase and subsequent phosphorylation of an endogenous protein(s) may be responsible, at least in part, for the MIH-induced inhibition of steroidogenesis. By contrast, it is most unlikely that cAMP-kinase is involved in these processes.  相似文献   

15.
To elucidate the molecular mechanisms underlying neuronal death after transient forebrain ischemia, we cloned genes expressed after transient forebrain ischemia in the Mongolian gerbil by a differential display method. A gerbil homolog of rat zinc transporter, ZnT-1, which transports intracellular Zn2+ out of cells, was isolated. Its expression became detectable exclusively in pyramidal neurons of the CA1 region 12 hr after ischemia and reached a maximum from day 1 to day 2 as shown by in situ hybridization. By day 7, expression had disappeared entirely from the cells in the CA1 region, because the neurons had died. No other brain regions exhibited such a significant level of ZnT-1 mRNA expression during this period. Zn2+ was shown to accumulate in CA1 pyramidal neurons expressing ZnT-1 mRNA after the ischemia by using zinquin, a zinc-specific fluorescent dye. When primary hippocampal neurons were exposed to a high dose of Zn2+, ZnT-1 mRNA accumulated. These results suggest that the induction of ZnT-1 mRNA observed in CA1 neurons was caused by an increase in the intracellular Zn2+ concentration. It was reported recently that Zn2+ chelator blocked neuronal death after ischemia and that the influx of Zn2+ might be a key mechanism underlying neuronal death. The induction of ZnT-1 mRNA in CA1 pyramidal neurons fated to die after transient ischemia is of interest to the study of postischemic events and the molecular mechanisms underlying delayed neuronal death.  相似文献   

16.
We have previously shown that methionine-enkephalin (MENK) alters in dose-dependent fashion the capacity of human neutrophils to produce superoxide anion. The response of neutrophils from different donors was diverse and this effect could be due to variable activity of proteolytic enzymes involved in the degradation of the neuropeptide. In this study, we have demonstrated a highly individual aminopeptidase N (APN) activity of neutrophils from different donors. Preincubation of neutrophils with MENK, but not with the synthetic agonist of the mu (DAGO) or the delta (DPDPE) opioid receptor, down-regulated the APN activity. This was paralleled by a loss in cell surface expression of APN at physiological (10(-10) M) concentrations of MENK. The level of APN activity from different donors correlated with the effect of MENK on superoxide anion release. Neutrophils with low APN activity, if preincubated with MENK, released reduced amounts of superoxide anion. In contrast, neutrophils with high APN activity released increased amounts of superoxide anion after preincubation with MENK. Thus, the highly individual APN activity on the surface of neutrophils from different donors seems to be altered by MENK and to be related to the respiratory burst.  相似文献   

17.
18.
Acute hepatic failure models with extensive hepatic necrosis and hyperammonemia were developed in small animals. One model is bases on the retrograde infusion of ethanolamine oleate into the common bile duct of guinea pigs and another is based on the infusion of TNF-lipiodol emulsion into the portal tract of rats.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号