首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
乳化剂因亲水亲油平衡值的不同对油脂乳化效果表现出固有的差异,但这种差异会因加入辅助剂的影响而发生改变。以非离子型表面活性剂单甘酯、蔗糖酯和吐温20为乳化剂,以白果直链淀粉及阿拉伯胶(质量比1∶1)为辅助剂,对橄榄油进行乳化,考察了辅助剂加入前后在不同制备方法(先油后水和先水后油工艺)和乳化剂添加量下乳液的稳定性。结果表明:单独使用乳化剂时,经外观观察,在三种乳化剂添加量相同时,吐温20的橄榄油乳液稳定性较好,其次为蔗糖酯、单甘酯;加入辅助剂后,乳液的乳化状态较单一加入乳化剂的好,乳液黏度、粒径和浑浊度均随着乳化剂添加量的增大呈先减小后增加趋势,且在相同添加量下,由蔗糖酯制备的橄榄油乳液黏度较低,粒径和浑浊度较小,稳定性较好,吐温20及单甘酯次之;辅助剂加入前后,先油后水工艺制备的橄榄油乳液的稳定性总体优于先水后油工艺的。  相似文献   

2.

ABSTRACT

Microencapsulation is a technique by which small droplets of liquid or solid particles are coated with a thin film of wall materials to protect susceptible ingredients in food products to assure their quality or effectiveness. Microencapsulation of liquid lipid into powdery matrixes of wall materials includes two unit operations: emulsification of the lipid with an aqueous solution of wall material and drying of the emulsion. The effects of hydrophile–lipophile balance (HLB) value, emulsifier content and oil content on the evening primrose oil‐in‐water emulsion stability were studied by response surface methodology (RSM). The HLB value, emulsifier content and oil content all had significant effects on the emulsion stability (P < 0.05). Of them, the HLB value and emulsifier content contributed more effects than the oil content. The optimized HLB value, emulsifier content and oil content were used to mix with wall materials: gum arabic (GA), maltodextrin (MD) and/or sodium caseinate (NaC). The oil was encapsulated with these materials individually or in combination by spray‐drying, and their oxidative stability during storage was compared. The microcapsules with a single wall material were relatively susceptible to oxidation than those with multiple wall materials. The most desirable composition of the mixture of GA, MD and NaC by RSM was 17.2, 75 and 7.8%, respectively.

PRACTICAL APPLICATIONS

Response surface methodology (RSM) provided a valuable means to help us understand the relative or interactive effects of three important parameters: HLB value, emulsifier content and oil content on the emulsion stability of the oil‐in‐water (o/w) system. The information obtained would be useful for the preparation of similar o/w emulsion system as needed in some product development for foods. In addition, the effects of gum arabic, maltodextrin and sodium caseinate on the oxidative stability of microencapsulated oil were also studied by RSM. The results revealed the relative or interactive effects of these materials and gave the optimal conditions in minimizing the oxidative instability in this study. Since these wall materials are readily available and widely used in a variety of products, the information provided by this study would be useful for product‐developing professionals to use these materials more efficiently in terms of obtaining optimal microencapsulated products against lipid oxidation and cost effectiveness.  相似文献   

3.
以米糠蜡、棕榈蜡、蜂蜡3种食品级植物蜡为凝胶剂,葵花籽油、油茶籽油、亚麻籽油、棉籽油为基料油,构建了植物油基油凝胶,系统分析了油凝胶的外观形态、持油能力、微观结构、硬度、晶型及熔化结晶行为。结果发现,棕榈蜡基油凝胶涂抹性能优良,蜂蜡基油凝胶在三者中具有最高的持油能力。微观分析表明,米糠蜡形成的油凝胶晶体结构较为清晰,呈细长的针状;蜂蜡形成的油凝胶晶体结构最为细小,呈细小的针状;棕榈蜡形成的油凝胶,针型细密,并呈絮状结晶。晶体密度及样品硬度均随凝胶剂质量分数增加而增加。油凝胶的晶型与凝胶剂质量分数、基料油的种类无太大关系,主要取决于凝胶剂的种类。熔化结晶行为表明,凝胶剂种类相同时,随着其质量分数的增加,油凝胶的结晶/熔化峰值温度均升高。  相似文献   

4.
It has been recognized that the vehicle in which a permeant is applied to the skin has a distinctive effect on the dermal and transdermal delivery of active ingredients. The cutaneous and percutaneous absorptions can be enhanced, e.g. by an increase in thermodynamic activity, supersaturation and penetration modifiers. Furthermore, dermal and transdermal delivery can be influenced by the interactions that may occur between the vehicle and the skin on the one hand, and interactions between the active ingredient and the skin on the other hand. Emulsions are widely used as cosmetic and pharmaceutical formulations because of their excellent solubilizing capacities for lipophilic and hydrophilic active ingredients and application acceptability. This review focuses, in particular, on the effect of emulsions on the dermal and transdermal delivery of active ingredients. It is shown that the type of emulsion (w/o vs. o/w emulsion), the droplet size, the emollient, the emulsifier as well as the surfactant organization (micelles, lyotropic liquid crystals) in the emulsion may affect the cutaneous and percutaneous absorption. Examples substantiate the fact that emulsion constituents such as emollients and emulsifiers should be selected carefully for optimal efficiency of the formulation. Moreover, to understand the influence of emulsion on dermal and transdermal delivery, the physicochemical properties of the formulation after application are considered.  相似文献   

5.
Oil-in-water emulsions stabilized with nonionic emulsifiers change to water-in-oil emulsions as the temperature rises when the hydrophilic and lipophilic properties of the mixed emulsifier are just balanced. Preparation above the phase inversion temperature followed by rapid cooling yields emulsions that exhibit very fine droplet size and extreme long-term stability. Cosmetic emulsions were prepared by this phase inversion temperature (PIT) method using typical raw materials such as polar oils, e.g. decyl oleate, 2-octyl dodecanol or isopropyl myristate, and nonionic emulsifiers, e.g. ceteareth-12 or polyoxyethylene eicosyl/docosyl ether combined with cetostearyl alcohol as a co-emulsifier. The phase inversion temperature was measured as a function of the oil polarity and the concentration of mixed emulsifier. The relationship between phase inversion temperature, droplet size and emulsion stability was investigated. In addition, self-bodying agents such as cetostearyl alcohol or monoglycerides were added to these thin, fine disperse emulsions to adjust the consistency. The influence of these ingredients on phase inversion temperature, droplet size, yield value and emulsion stability was studied.  相似文献   

6.
传统塑性脂肪带来健康问题,液态油固化成为构建零反式、低饱和脂肪酸塑性脂肪替代品的新策略。蛋白质是优质的食品营养组分,是来源广泛的可再生资源,具有独特的界面特性。为扩大蛋白资源的应用范围及促进功能性油脂的开发,对蛋白质的结构化及蛋白基乳液模板法构建油凝胶(结构化油脂)研究进展进行了综述,同时介绍了蛋白基乳液模板法构建的油凝胶的应用。蛋白质在一定条件下可作为凝胶剂固化液态油;蛋白基乳液模板法构建油凝胶具有安全性高、对环境污染小等优点。采用蛋白基乳液模板法构建的油凝胶可应用于替代传统塑性脂肪、荷载生物活性成分方面。  相似文献   

7.
Iron-Catalyzed Oxidation of Menhaden Oil as Affected by Emulsifiers   总被引:3,自引:0,他引:3  
The ability of Tween 20 and whey protein isolate (WPI) to influence lipid oxidation was investigated by evaluating the effects of emulsifier concentration and physical location on iron-catalyzed oxidation of emulsified Menhaden oil. Addition of Tween 20 or WPI to the aqueous phase of a 0.5 wt% Tween 20 stabilized emulsion increased lipid oxidation as determined by both thiobarbituric acid reactive substances (TBARS) and lipid peroxides. Tween 20 (2.0 wt%) and WPI (0.05–1.0 wt%) combinations inhibited TBARS formation 23–60%. Oxidation of a WPI-stabilized emulsion decreased with decreasing pH (3–7) but in a Tween 20 stabilized emulsion oxidation increased with decreasing pH. The low oxidation rate for the WPI-stabilized emulsion at pH 3 was increased when Tween 20 displaced WPI from the droplet interface. Results indicate that the oxidative stability of emulsifed Menhaden oil could be increased by controlling emulsifier type, location and concentration.  相似文献   

8.
陈雅琪 《中国油脂》2021,46(6):48-52
采用高压均质法,以乳清分离蛋白为乳化剂制备南瓜籽油乳液,对均质压力、均质次数、乳化剂添加量以及南瓜籽油质量分数对南瓜籽油乳液粒径、多分散系数(PDI)、Zeta电位和分光比(SRI,800 nm下吸光度与400 nm下吸光度的比值)的影响进行考察,并研究了南瓜籽油乳液的稳定性。结果表明:南瓜籽油乳液的最佳制备工艺条件为均质压力50 MPa、均质次数5次、乳化剂添加量2.5%、南瓜籽油质量分数10%,在最佳工艺条件下,南瓜籽油乳液的粒径为(213.33±5.60)nm,PDI 为0.215±0.002,Zeta电位为(-5680±0.66)mV,SRI为 0.27±0.02;在15 d的室温储藏期间内南瓜籽油乳液具有较好的物理稳定性和较高的氧化稳定性。  相似文献   

9.
为了降低婴儿配方营养油中不饱和脂肪酸的氧化酸败和提高其消化吸收,该研究以调和油为油相、乳清蛋白为壁材,将乳化剂溶于油相,超声法制备成纳米级乳化液,利用喷雾干燥法将纳米乳液制备成微胶囊粉末。以乳液粒径为响应值,用响应面分析法研究乳化剂添加量、超声功率和超声时间等因素对乳液粒径和喷雾干燥产品表面含油率的影响,优化制备工艺。结果表明,最佳工艺条件为:卵磷脂(PC)质量分数5.0%、超声功率660 W和超声时间20 min,乳液的平均粒径为(184.37±0.64)nm,微胶囊表面含油率为5.82%,依据此响应面模型数据可有效指导试验操作。喷雾干燥后的产品品质较好,在体外消化模拟试验中,在禁食和喂食状态下纳米乳液的游离脂肪酸释放量均高于未处理调和油。  相似文献   

10.
Irritant and allergic reactions from cream bases observed in eczema patients are reviewed. The frequency of allergic reactions to the ingredients of vehicles in eczema patients is an indication of allergic potential for normal skin. Against this background, hypoallergenic fragrances are still very difficult to produce and a proper mixture for epicutaneous testing is lacking. Among preservatives, parabens are obviously safer and less allergenic than chlorocresol and sorbic acid. Propylene glycol (PG) is very popular for its many beneficial properties. However, it is also an irritant and a sensitiser. The exact number of allergic delayed type reactions is difficult to establish because primary irritant epicutaneous test reactions often closely resemble allergic reactions. By doing epicutaneous tests with serial dilutions of PG and by making peroral challenge tests, the number of eczema patients allergic to PG has been estimated to be as high as 1%. Glycerol is much less active in producing toxic and allergic skin reactions. Common non-ionic emulsifiers and higher fatty alcohols cause allergic contact dermatitis occasionally. The allergenic properties of these substances have not yet been examined experimentally. It seems, however, that there are only small differences between the various emulsifying agents. Les allergies et réactions de toxicité causées par les constituants des crèmes sur les sujets atteints de dermatoses  相似文献   

11.
Emulsion filled alginate microgel particles can be applied as carrier systems for lipophilic actives in pharmaceutical and food formulations. In this study, the effects of oil concentration, emulsifier type and oil droplet size on the physical stability of emulsions encapsulated in calcium alginate microgel particles (20–80 μm) produced by a continuous impinging aerosol technique were studied. Oil emulsions emulsified by using either sodium caseinate (SCN) or Tween 80 were encapsulated at different oil concentrations (32.55, 66.66 and 76.68% w/w of total solids content). The emulsions were analysed before and after encapsulation for changes in emulsion size distribution during storage, and compared to unencapsulated emulsions. The size distribution of encapsulated fine emulsion (mean size ~ 0.20 μm) shifted to a larger size distribution range during encapsulation possibly due to the contraction effect of the microgel particles. Coarse emulsion droplets (mean size ~ 18 μm) underwent a size reduction during encapsulation due to the shearing effect of the atomizing nozzle. However, no further size changes in the encapsulated emulsion were detected over four weeks. The type of emulsifier used and emulsion concentration did not significantly affect the emulsion stability. The results suggest that the rigid gel matrix is an effective method for stabilising lipid emulsions and can be used as a carrier for functional ingredients.  相似文献   

12.
The purpose of this study was to produce an oil-in-water nano-emulsion with different compositions of the continuous and dispersed phases through microfluidization. The aqueous phase was a solution of maltodextrin with five different emulsifying ingredients including modified starch (Capsul and Hi-Cap), sodium caseinate (SC), whey protein hydrolysate (WPH), or whey protein concentrate (WPC), while the oil phase consisted of d-limonene or fish oil. Results showed that micofluidizer was capable of producing nano-emulsions (D32 as small as 150 nm) with a narrow size distribution. Generally, moderate microfluidization pressures (42–63 MPa) and cycles (1–2) were the optimum conditions beyond which, there were adverse changes in the emulsion size. For the two oils tested as the dispersed phase, fish oil emulsions had lower Sauter mean diameters (D32) but with wider size distributions than d-limonene. When different emulsifying ingredients were compared, Hi-Cap produced nano-emulsions with the narrowest distribution but highest D32 (about 600 nm). Nano-emulsions with WPC had the smallest D32 (about 200 nm) but the widest size distribution. It was found that a d-limonene volume fraction of 0.10 was the optimum dispersed-phase concentration in terms of emulsion droplet size (D32). Also, adding a surfactant (Tween 20) helped to reduce the emulsion size significantly during microfluidization, but it lead to extensive flocculation of emulsion droplets because of surfactant–biopolymer interactions and emulsifier displacement.  相似文献   

13.
Emulsification is a complex process, strongly influenced by emulsion composition as well as by preparation procedure, and the characterisation of emulsions with regard to their structure and stability can be carried out with many different methods. To evaluate the influences of emulsion composition and preparation procedure on the structure and properties, oil‐in‐water emulsions were prepared using the model dispersed phase dodecane and the surfactant Tween on the one hand and the real food components sunflower oil (dispersed phase) and casein (emulsifier) on the other hand. The emulsions were prepared in a small laboratory‐scale with a turbo‐mixer alone and in combination with ultrasonic treatment. The emulsion activity was measured by photometry, the emulsion stability was evaluated visually and the droplet size was determined by laser particle analysis. The results of the investigations made with the model substances agreed only partly with those made with the real food substances. For the model emulsions strong correlation were found between the emulsion activity and the particle sizer data because of the high purity and the defined structure of the model substances. On the contrary, for the emulsions made with the real food components sunflower oil and sodium caseinate the correlation were much weaker. Therefore, a proper characterisation of the structure and properties of food emulsions requires examinations with several methods which are independent from each other. Furthermore, for laboratory‐scale emulsification the combination of turbo‐mixer and ultrasonic treatment is suitable to obtain small droplets and a narrow droplet distribution also for very small emulsion volumes.  相似文献   

14.
Abstract: Anthocyanins belong to the most important hydrophilic plant pigments. Outside their natural environment, these molecules are extremely unstable. Encapsulating them in submicron‐sized containers is one possibility to stabilize them for the use in bioactivity studies or functional foods. The containers have to be designed for a target release in the human gastrointestinal system. In this contribution, an anthocyanin‐rich bilberry extract was encapsulated in the inner aqueous phase of water‐in‐oil‐in‐water‐double emulsions. The physical stability as well as the release of free fatty acids and encapsulated, bioactive substances from the emulsions during an in vitro gastrointestinal passage were investigated. The focus was on the influence of emulsion microstructural parameters (for example, inner and outer droplet size, disperse phase content) and required additives (emulsifier systems), respectively. It could be shown that it is possible to stabilize anthocyanins in the inner phase of double emulsions. The release rate of free fatty acids during incubation was independent of the emulsifier used. However, the exterior (O/W)‐emulsifier has an impact on the stability of multiple emulsions in gastrointestinal environment and, thus, the location of release. Long‐chained emulsifiers like whey proteins are most suitable to transport a maximum amount of bioactive substances to the effective location, being the small intestine for anthocyanins. In addition, it was shown that the dominating release mechanism for entrapped matter was coalescence of the interior W1‐droplets with the surrounding W2‐phase. Practical Application: Microencapsulation of phytochemicals and bioactives is in the focus of functional food development. Here, the influence of matrix material, formulation, and structural parameters on stabilization and release of the molecules encapsulated has to be known for target product and process design. As the results are representative for hydrophilic active ingredients encapsulated in double emulsion systems a cross‐sectoral use in the pharmaceutical sector is possible.  相似文献   

15.
Food flavor is an important attribute of quality food, and it largely determines consumer food preference. Many food products exist as emulsions or experience emulsification during processing, and therefore, a good understanding of flavor release from emulsions is essential to design food with desirable flavor characteristics. Emulsions are biphasic systems, where flavor compounds are partitioning into different phases, and the releases can be modulated through different ways. Emulsion ingredients, such as oils, emulsifiers, thickening agents, can interact with flavor compounds, thus modifying the thermodynamic behavior of flavor compounds. Emulsion structures, including droplet size and size distribution, viscosity, interface thickness, etc., can influence flavor component partition and their diffusion in the emulsions, resulting in different release kinetics. When emulsions are consumed in the mouth, both emulsion ingredients and structures undergo significant changes, resulting in different flavor perception. Special design of emulsion structures in the water phase, oil phase, and interface provides emulsions with great potential as delivery systems to control flavor release in wider applications. This review provides an overview of the current understanding of flavor release from emulsions, and how emulsions can behave as delivery systems for flavor compounds to better design novel food products with enhanced sensorial and nutritional attributes.  相似文献   

16.
为获得新型的微胶囊粉末油脂乳化剂和壁材,以蜡质玉米淀粉为原料,采用湿法制备辛烯基琥珀酸淀粉酯,再经普鲁兰酶水解,获得辛烯基琥珀酸直链淀粉酯,并研究了辛烯基琥珀酸直链淀粉酯的性质及其在微胶囊粉末油脂中的应用。结果表明,辛烯基琥珀酸淀粉酯经普鲁兰酶水解后,乳化性略有降低;制备的辛烯基琥珀酸直链淀粉酯具有低粘度和良好的成膜性;作为壁材和主要乳化剂制备微胶囊粉末油脂时,包埋率较高,无渗漏、破裂现象,表面油含量低,包埋效果良好;微胶囊复原乳状液对盐酸、柠檬酸及金属离子的耐受性好,在24h内未出现分层现象。  相似文献   

17.
共轭亚油酸多重乳状液的制备及稳定性研究   总被引:1,自引:0,他引:1  
以多重乳状液相对体积为衡量标准,借助显微镜直接观察,探讨油水相质量比、亲油亲水乳化剂质量比、乳化剂的HLB值、乳化剂的含量等因素对共轭亚油酸多重乳状液体系稳定性的影响.结果表明,单一乳化剂体系中,以Tween80作亲水乳化剂制备的多重乳状液稳定性较好.当m(内水相):m(油相):m(外水相)=1:5:1.3,m(Span80):m(Tween80)=9,乳化剂的含量为9.7%时,多重乳液相对体积达到93%.复合乳化剂体系中,在第一相的HLB值为7.4,m(复合乳化剂):m(Tween80)=9,乳化剂质量分数为6.67%时,稳定性最好.  相似文献   

18.
Emulsification is a complex process, strongly influenced by emulsion composition as well as by preparation procedure, and the characterisation of emulsions with regard to their structure and stability can be carried out with many different methods. To evaluate the influences of emulsion composition and preparation procedure on the structure and properties, oil-in-water emulsions were prepared using the model dispersed phase dodecane and the surfactant Tween on the one hand and the real food components sunflower oil (dispersed phase) and casein (emulsifier) on the other hand. The emulsions were prepared in a small laboratory-scale with a turbo-mixer alone and in combination with ultrasonic treatment. The emulsion activity was measured by photometry, the emulsion stability was evaluated visually and the droplet size was determined by laser particle analysis. The results of the investigations made with the model substances agree only partly with those made with the real food substances. For the model emulsions strong correlation were found between the emulsion activity and the particle sizer data because of the high purity and the defined structure of the model substances. On the contrary, for the emulsions made with the real food components sunflower oil and sodium caseinate the correlation were much weaker. Therefore a proper characterisation of the structure and properties of food emulsions requires examinations with several methods which are independent from each other. Furthermore, for laboratory-scale emulsification the combination of turbo-mixer and ultrasonic treatment is suitable to obtain small droplets and a narrow droplet distribution also for very small emulsion volumes.  相似文献   

19.
对影响乳状液稳定性的因素如乳化剂种类、乳化剂浓度、阿拉伯胶浓度、混合温度及混合时间等进行了研究。试验结果表明 ,香料乳状液稳定的优化条件是 :吐温 - 80用量 0 .8%、阿拉伯胶用量9.0 %、室温下混合搅拌 7min。  相似文献   

20.
为优化蔗糖聚酯的乳化工艺,提高其乳液的稳定性,采用转相乳化法,研究了复合乳化剂HLB值、用量、油水比例、乳化时间、乳化温度及搅拌速度对蔗糖聚酯乳化效果的影响,并对蔗糖聚酯乳液的稳定性和应用性进行了研究。结果表明,最佳的乳化条件为:复合乳化剂HLB值为9.8,用量为9%,乳化水油比例为2,乳化时间85 min,乳化温度30 ℃,剪切速率2000 r/min;该蔗糖聚酯乳液具有高稳定性和良好分散性,粒径分布均匀,长期放置不分层,且该蔗糖聚酯乳液能够有效降低织物表面摩擦因数,赋予织物良好的柔软效果,对织物色变影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号