首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以Ti_3SiC_2粉末为增强体,Al-4Si合金作为基体,通过半固态工艺制备了5%(质量分数)Ti_3SiC_2/Al-4Si复合材料。利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)等研究了半固态制备5%(质量分数)Ti_3SiC_2/Al-4Si复合材料的界面反应对其组织及性能的影响。结果表明,在半固态制备过程中Ti_3SiC_2与Al-4Si基体发生界面反应生成了Al_3Ti、TiC、Al_4C_3物相,Al_3Ti及TiC颗粒分布在晶界处;复合材料硬度约为46.8 HV0.3,相比Al-4Si基体合金硬度略微提高;与Al-4Si基体合金相比,界面反应产生的第二相颗粒显著改善复合材料的摩擦学性能,摩擦系数为0.263,磨损量为0.0069 g。  相似文献   

2.
采用Al/Ti/C/Diamond粉体为原料,通过原位反应烧结技术,制备Al/TiC金属陶瓷复合结合剂金刚石材料.采用X射线衍射、扫描电镜及能谱仪分析试样.结果表明,在1000℃保温1h,反应烧结得到Al/TiC金属陶瓷复合结合剂金刚石材料;Al含量较低时,产物基体的主相为Al和TiC;当Al含量较高时,产物基体的主相则为Al和M3Ti;基体与金刚石具有良好的结合.该复合材料具有良好的力学性能,其硬度最高达97.7 HRC.  相似文献   

3.
采用Cu/Ti/C/Diamond粉体为原料,通过原位反应烧结技术,制备Cu/TiC结合剂金刚石复合材料。采用X射线衍射、扫描电镜和洛氏硬度仪分析试样。结果表明,在1000℃保温1h,反应烧结得到Cu/TiC金属陶瓷复合结合剂金刚石材料。当Cu含量较低时,产物中有一定量的CuTi_x相;当Cu含量较高时,产物的主要相为Cu、CuTi、TiC。断口形貌表明,高Cu含量的基体与金刚石有着良好的结合。  相似文献   

4.
分别以Ti/Si/2TiC混合粉体和Ti3SiC2单相粉体作为结合剂原料,采用放电等离子体烧结技术合成了TiC/Ti3SiC2结合剂金刚石复合材料,探讨不同的结合剂原料和保温时间对TiC/Ti3SiC2结合剂金刚石复合材料的物相构成、微观形貌以及磨削性能的影响。结果表明:采用Ti/Si/2TiC为结合剂原料,保温1 min时,会形成较多量的Ti3SiC2,Ti3SiC2基体与金刚石结合良好,二者之间没有孔隙;当保温5 min时,Ti3SiC2发生分解,基体主相转变为TiC,同时有一定量的Si,金刚石表面被侵蚀,形成凹凸不平的表面。采用Ti3SiC2为结合剂原料时,Ti3SiC2基体发生严重的分解,生成TiC和Si;金刚石与基体间存在一个过渡层,厚度约15 μm。Ti/Si/2TiC为结合剂原料保温1 min时试样的磨耗比值最大,为1 128。单相Ti3SiC2为结合剂的2个试样的磨耗比值约为100左右。   相似文献   

5.
李新 《热加工工艺》2013,42(4):74-75,79
采用3TiC/Si/0.2A1粉体为原料,通过无压烧结反应合成了片状TiC晶粒.采用XRD、SEM和EDS对试样的物相组成、微观形貌和微区成分进行分析.结果表明,在1100~1200℃、保温2h,原料反应合成了主相Ti3SiC2,同时含有少量TiC、SiC相;当温度为1300℃时,Ti3SiC2开始明显分解;当温度升至1350℃时,试样中Ti3SiC2完全分解,产物主要由TiC相和少量SiC组成;六方TiC晶粒边长5μm.  相似文献   

6.
采用Ni/Ti/石墨/金刚石粉体为原料,使用自蔓延高温烧结技术,合成了Ni-TiC结合剂金刚石复合材料。研究了金刚石含量和粒度对得到的试样的显微结构与物相组成的影响。研究结果表明:原料经自蔓延高温烧结后,产物主相为Ni、TiC和金刚石。当原料中物质的量比Ti:C=1:1时,无论金刚石粒度和含量如何调整,都很难在金刚石表面获得良好的涂层;只有当金刚石粒度较细时(20 μm),才能在金刚石表面形成良好的涂覆。适当增加原料中Ti的含量,可以在金刚石表面形成比较均匀的Ni-TiC复合涂层,其中TiC晶粒大小约为1 μm。   相似文献   

7.
利用半导体激光器在TC4钛合金表面激光熔覆Ni60+Ti_3Si C_2混合粉末,成功制备了Ni基自润滑复合涂层。利用OM、SEM、XRD、EDS等分析了涂层的微观组织及物相组成,利用显微硬度计和摩擦磨损试验机测试了涂层的显微硬度和摩擦磨损性能。结果表明:不同Ti_3Si C_2含量的涂层主要由TiC、TiB_2、Ti_5Si_3、Ti_3SiC_2、γ-Ni基体等物相组成,涂层组织分布致密均匀;涂层的显微硬度显著提高主要归功于TiC、TiB_2硬质相的存在,当Ti_3SiC_2含量为7.5%时显微硬度最高,为1150 HV0.2;当Ti_3SiC_2含量为10%时,摩擦因数稳定在0.26~0.30,磨损量最小为1.2 mg。  相似文献   

8.
研究了采用分步法制备MoS_2/Ti_3SiC_2层状复合材料的工艺,其制备过程分2步进行。首先制备Ti_3SiC_2高纯粉,再在1400℃,30MPa条件下热压烧结制备MoS_2/Ti_3SiC_2层状复合材料。其MoS_2含量分别为2%,4%,6%,8%(w/%)。用XRD分析比较4种不同MoS2含量的烧结试样的相组成,并测试维氏硬度和电导率。实验结果表明,当MoS_2含量为4%时,MoS_2/Ti_3SiC_2烧结试样的硬度达到7.83GPa,且电导率达到10.05×106S·m-1。MoS_2含量再增加时,烧结试样的硬度有所增大,但电导率有所下降。  相似文献   

9.
围绕Ti-Si-C体系,采用Ti,Si,C,SiC等粉体,利用SPS原位反应烧结制备了一系列Ti-Si-C体系纳米复合材料,主要包括TiC/SiC,Ti5Si3/TiC,Ti5Si3/TiC/Ti3SiC2等纳米复合材料.利用XRD,SEM和TEM分析了复合材料的相组成和显微结构,利用压痕法测定了其室温显微硬度和断裂韧性.结果表明利用SPS技术可在比较低的温度(<1500℃),很短的保温时间(<8 min)下同步完成反应、烧结、致密化,生成Ti-Si-C系纳米复合材料,并且晶粒细小,其中某一相晶粒尺寸小于500 nm.  相似文献   

10.
以Ti、Si和活性炭粉为主要原料,利用热压烧结工艺合成了Ti3SiC2/TiC复相陶瓷.研究了工艺条件尤其是不同保温保压时间对合成产物相组成及微观结构的影响,并结合XRD、SEM和热力学分析等探讨了反应合成机理.结果表明:热压温度为1400℃,25MPa保温保压4h时,得到了均匀、致密的Ti3SiC2/TiC强夹层复合陶瓷,其中TiC颗粒均匀地分布在Ti3 SiC2陶瓷基体中;同时保温保压时间对Ti3SiC2/TiC的合成起关键作用.  相似文献   

11.
采用自蔓延高温烧结(SHS)技术,以Ti/Sn/石墨/Diamond粉体为原料,制备了Ti2SnC结合剂金刚石复合材料。研究了金刚石粒径和质量分数对试样的物相组成与金刚石表面显微形貌的影响。研究结果表明:2Ti/Sn/C试样反应后生成Ti2SnC,同时生成TiC,剩余一定量Sn。添加不同粒度(M10/20、120/140、80/100和30/40)的金刚石后,Ti2SnC含量有所下降。金刚石表面会形成TiC与Sn构成的涂层。随着金刚石质量分数(120/140)的增加,样品中Ti2SnC的形成相应地受到抑制,同时金刚石与基体结合也变差,当金刚石质量分数为40%时,金刚石表面无法形成良好的涂覆。  相似文献   

12.
利用TiC粉、Ti粉和Al粉为原料,以摩尔比为TiCAlTi=21.21混合,通过无压烧结的方法合成高纯的Ti3AlC2粉末材料.研究了在不同的烧结温度(1200℃~1500℃)分别保温15 min,以及在1300℃下保温不同时间的烧结结果.最终得出结论,在1300℃~1400℃保温15 min后可以得到高纯度的Ti3AlC2材料,Ti3AlC2含量高达96.76ω/%.另外,由于1500℃时合成的样品中晶粒已经很大,使得其在做粉末X-射线衍射时很容易产生织构,使Ti3AlC2的{002}峰异常增强.  相似文献   

13.
为了研究添加少量Al对反应速度和产物纯度的影响,以Ti/Si/TiC/Al=2:2:3.5:x(x=0,005,0.1,0.15,0.20,0.25)的混合粉末为原料,在1100~1500℃用无压反应烧结方法制备了Ti3SiC2粉末.并用XRD、SEM及EDS对其进行分析.结果表明,添加适量的Al能加速Ti3SiC2粉未的合成,产物纯度显著增加,最高产物纯度可达99.37wt%,可以使获得单相Ti3SiC2粉末的烧结温度由1500℃降到1400℃.反应的机理在于Al能脱除体系中残留的氧,并且尽早形成液相,取代部分Si在M3AX2相中的位置,从而加速Ti3SiC2粉末的合成.  相似文献   

14.
为降低金刚石磨削工具的制造成本和能耗,探寻一种在低能耗下实现高性能陶瓷结合剂金刚石磨具的制备工艺,同时研究助燃剂Si和金刚石粒度等因素对样品物相组成、显微形貌和磨削性能的影响。采用Ti、Si、石墨粉和金刚石磨料作为原料,经冷压成型至生胚,通过Ni-Al辅助在微波场加热诱发Ti-Si-C体系发生自蔓延高温合成(SHS)反应以制备Ti3SiC2基金刚石复合材料。结果表明,高热值Ni-Al合金辅助可以缩短样品的烧结时间,还可以将诱发SHS反应的温度点控制在金刚石石墨化温度以下。在Ar保护气氛下,Ti-Si-C体系发生SHS反应,可生成Ti3SiC2、TiC和Ti5Si3等3种物相。随Si含量升高,Ti3SiC2相先增多后减少,当n (Ti):n (Si):n (C)=3∶1.1∶2时,复合材料的磨削性能最佳,磨耗比最高可达286.53。分析不同原料配比下的试样磨耗比差异的产生机制,认为基体组织中存在微小且分布均匀的气孔...  相似文献   

15.
采用三元层状导电可加工陶瓷Mn+1AXn(简称MAX相)材料粉体和金刚石粉体为原料,通过微波烧结制备以MAX相为结合剂的金刚石复合材料,研究MAX相的种类与金刚石含量对该复合材料的物相组成与显微形貌的影响。通过高温微波烧结MAX相-金刚石复合材料,金刚石表面会形成不同的涂层组织。MAX相的种类与金刚石含量对复合材料中基体组成和金刚石的表面涂层状态有显著影响。实验结果表明:在Ti2SnC-金刚石复合材料中,烧结后Ti2SnC会发生严重的分解,分解生成Sn与TiC,在含量较低时,表面仍然光滑,金刚石表面黏附少量富锡圆形组织;当金刚石含量较高时,金刚石表面形成许多细小TiC颗粒。在Ti3AlC2-金刚石复合材料中,Ti3AlC2分解后生成Al与TiC,金刚石的表面受到明显的侵蚀,同时在表面形成Al4C3和Al2O3二元组织。对于Ti3SiC2-金刚石反应体系,基体主相均为Ti3SiC2。当金刚石质量分数为10%时,同时还含有少量Si、TiSi2和SiC;当金刚石质量分数为20%时,基体中还含有少量TiC,金刚石表面形成了SiC和TiSi2二元涂层组织。   相似文献   

16.
采用3TiC/2Si/0.2Al粉体为原料,通过原位反应烧结技术制备致密的纳米SiC增强Ti3SiC2材料,同时研究不同烧结方式(热压烧结和放电等离子烧结)对反应产物的影响.采用XRD、SEM和EDS对试样的物相组成、微观形貌和微区成分进行分析.结果表明,采用两种烧结技术都可制备致密的SiC增强Ti3SiC2细晶材料;采用热压烧结技术可制备纳米SiC-Ti3SiC2复合材料;采用放电等离子烧结技术得到的复合材料中SiC晶粒略粗,为500 nm.  相似文献   

17.
通过2TiC-Ti-1.2Al体系的原位热压反应制备Ti_3AlC_2陶瓷,然后以59.2Ti-30.8Al-10Ti_3AlC_2(质量分数,下同,%)为反应体系,采用放电等离子烧结技术制备Ti_2AlC/Ti Al基复合材料。借助XRD、SEM分析产物的相组成和微观结构,并测量其室温力学性能。结果表明:原位热压烧结产物由Ti_3AlC_2和TiC相组成,Ti_3AlC_2呈典型的层状结构,TiC颗粒分布在其间;SPS法制备的Ti_2AlC/Ti Al基复合材料主要由Ti Al、Ti_3Al和Ti_2AlC相组成,Ti_2AlC增强相主要分布于基体晶界处,发挥了晶界/晶内内生型强化相的增强作用。力学性能测试表明:Ti_2AlC/Ti Al基复合材料的密度、维氏硬度、断裂韧性和抗弯强度分别为3.85 g/cm~3、5.37 GPa、7.17 MPa·m~(1/2)和494.85 MPa,穿晶、沿晶及层状撕裂等混合断裂特征对改善性能发挥了重要作用。  相似文献   

18.
以Al/Ti/C/CBN粉体为原料,通过原位反应烧结技术,制备Al基金属陶瓷复合结合剂立方氮化硼材料。使用X射线衍射仪(XRD)、扫描电镜(SEM)结合能谱仪(EDS)分析试样。研究结果表明:在1 000℃保温1 h,反应烧结得到Al/TiC或Al/Al3Ti金属陶瓷复合结合剂立方氮化硼材料。Al质量分数较低时,产物的主相为Al和TiC;而当Al质量分数较高时,产物的主相则为Al和Al3Ti。同时,氮化硼与Ti和Al反应合成了AlN和TiB。试样的物相分析和断口形貌都表明基体与氮化硼有良好的结合。  相似文献   

19.
机械合金化3Ti/Si/2C粉体,会诱发自蔓延反应,产生组成相为TiC、Ti3SiC2、TiSi2和Ti5Si3的粉体与块体产物.获得的粉体和块体产物中Ti3SiC2含量分别约为17.6%和58.2%(质量分数,下同).本研究提出了一个机械诱发自蔓延反应合成Ti3SiC2的反应机制,即Ti3SiC2是从固相TiC与Ti-Si液相中形核并长大.最后讨论了机械诱发自蔓延反应与自蔓延高温烧结对合成产物中Ti3SiC2含量及显微形貌的影响.  相似文献   

20.
采用Ti/C/CBN粉体为原料,通过自蔓延高温烧结(SHS)技术,制备了TiC结合剂CBN复合材料。研究了Al添加剂与CBN粒度对烧结试样的物相组成与显微形貌的影响。研究结果表明:Ti/C/CBN试样(质量分数为10%CBN)反应后可生成TiC为主相的材料,同时CBN与Ti反应生成TiN和TiB2。但在反应后CBN发生严重的热损伤,颗粒上出现大量裂纹。在原料中添加适量Al,可避免CBN严重的热损伤,同时生成TiN、TiB2、Al3Ti、AlB2等物相。SHS反应后,较粗粒度的CBN颗粒表面会形成平均粒径约2.3μm的表面组织,而较细粒度的CBN颗粒与基体反应程度较大,部分CBN与基体元素反应形成过渡层,过渡层中组织的平均粒径约0.8μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号