首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Optical-phase-retardation elements are widely used in many fields.Accurate measurement of their phase retardation is crucial to the practical effect of the element’s processing and application.The development and present situation of the methods for optical phase retardation measurement are reviewed,with the wave plate,the most typical phase-retardation element,as an example.The latest research progress in this field is introduced;the principles and characteristics of individual measurement method are summarized and discussed.Three new methods based on laser frequency splitting or laser feedback are presented in detail,in which the laser is not only regarded as a light source but also plays a role of sensor.Moreover,no standard wave plates are needed and arbitrary phase retardation can be measured.Traceability,high precision and high repeatability are achieved as well.  相似文献   

2.
Human body communication (HBC) is a promising near-field communication (NFC) method emerging in recent years. But existing theoretical models of HBC are too simple to simulate the wave propagation on human body. In this work, in order to clarify the propagation mechanism of electromagnetic wave on human body, a surface waveguide HBC theoretical model based on stratified media cylinder is presented. A numerical model analyzed by finite element method (FEM) is used for comparing and validating the theoretical model. Finally, results of theoretical and numerical models from 80 MHz to 200 MHz agree fairly well, which means that theoretical model can characterize accurate propagation mechanism of HBC signal. Meanwhile, attenuation constants derived from two kinds of models are within the range from 1.64 to 3.37, so that HBC signal can propagate effectively on human body. The propagation mechanism derived from the theoretical model is useful to provide design information for the transmitter and the modeling of the propagation channel in HBC.  相似文献   

3.
A numerical method for multiple cracks in an infinite elastic plate   总被引:1,自引:0,他引:1  
This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.  相似文献   

4.
The effect of anisotropy on the ultrasound wave generation and propagation in the unidirectional fi- ber-reinforced composite plate has been investigated. A quantitative numerical model for the la- ser-generated ultrasound in the thermoelastic regime was presented by using a finite element method. All factors, such as spatial and time distributions of the incident laser beam, optical penetration, ther- mal diffusivity, and source-receiver distance can be taken into account. Numerical results show that the e...  相似文献   

5.
Abstract: The artificial neural networks(ANN) , which have broad application, are proposed to develop Cu-Pb composite plates materials. Based on the back propagation(BP) algorithm of the forward muhilayer perceptron, the model to predict the shear stress under different ingredient of the third element and the hot dipping temperature for Cu-Pb composite plates are established. Then the relational model among the third element, hot dipping temperature and shear stress by using the limited data are studied, and the forecast average error is 4%. This model can satisfy the requirements of the precision of forecast in the project experiment process. The results show that the corresponding shear stress is greater when the third element in the element contains more Sn; the most appropriate temperature of hot-dip plating about is 340℃, 'after predicted with lead/the third element/the best performance of copper composite material element of the third group is the one-element Sn, hot dip plating temperature is 335 ℃ ; two-element is 90% Sn 10% Bi, and hot dip plating temperature is 345 ℃. The prediction results can be used for a reference in instructing the further experimental design.  相似文献   

6.
Residual stress is one of the factors affecting the machining deformation of monolithic structure parts in the aviation industry. Thus,the studies on machining deformation rules induced by residual stresses largely depend on correctly and efficiently measuring the residual stresses of workpieces. A modified layer-removal method is proposed to measure residual stress by analysing the characteristics of a traditional layer-removal method. The coefficients of strain release are then deduced according to the simulation results using the finite element method( FEM). Moreover,the residual stress in a 7075T651 aluminium alloy plate is measured using the proposed method,and the results are then analyzed and compared with the data obtained by the traditional methods. The analysis indicates that the modified layer-removal method is effective and practical for measuring the residual stress distribution in pre-stretched aluminium alloy plates.  相似文献   

7.
This paper deals with the theoretical prediction of global buckling loads for carbon fiber composite pyramidal truss core sandwich columns. Different from thin plate structures, transverse shear effect can not be neglected for sandwich structures. In addition, the attributes of the laminated face sheets are considered in the present paper. A zig-zag displacement approximation is made. Based on the principle of minimum potential energy, equilibrium equations and boundary conditions are derived via the variational method. The critical buckling loads under various boundary conditions are presented. In order to validate the reasonableness of the equivalent-core method, the strain energies stored in the actual discrete truss members and the equivalent continuous homogenous core layer are calculated respectively and compared, and a good agreement is obtained. The proposed analytical method is verified by comparing with the published theoretical predictions and experimental results.  相似文献   

8.
A research on the stable fatigue crack propagation of 16MnR steel is investigated systematically in this paper. First, control experiments of 16MnR with compact tension specimen is conducted to study the effect of R-ratios, specimen thickness and notch sizes. The experiments show that the fatigue crack growth (FCG) rate in stable propagation was insensitive to these factors. Then, the stress intensity factor (SIF) is computed and compared by displacement interpolation method, J integral and interaction integral method respectively. The simulation shows that optimization on the mesh density and the angle of singular element improved the computational efficiency and accuracy of SIF and the interaction integral method has an obvious advantage on stability. Finally, the FCG rate is modeled by the Jiang fatigue damage criterion and the extended finite element method (XFEM) respectively. The simulation results of FCG rate are in line with experiments data and indicate that XFEM method is more accurate than Jiang fatigue damage method.  相似文献   

9.
Fault diagnosis of rotating machinery is of great importance to the high quality products and long-term safe operation.However,the useful weak features are usually corrupted by strong background noise,thus increasing the difficulty of the feature extraction.Thereby,a novel denoising method based on the tunable Q-factor wavelet transform(TQWT)using neighboring coefficients is proposed in this article.The emerging TQWT possesses excellent properties compared with the conventional constant-Q wavelet transforms,which can tune Q-factor according to the oscillatory behavior of the signal.Meanwhile,neighboring coefficients denoising is adopted to avoid the overkill of conventional term-by-term thresholding techniques.Because of having the combined advantages of the two methods,the presented denoising method is more practical and effective than other methods.The proposed method is applied to a simulated signal,a rolling element bearing with an outer race defect from antenna transmission chain and a gearbox fault detection case.The processing results demonstrate that the proposed method can successfully identify the fault features,showing that this method is more effective than the conventional wavelet thresholding denoising methods,term-by-term TQWT denoising schemes and spectral kurtosis.  相似文献   

10.
Regarding the plate problems, such approximate solutions as Rayleigh-Ritz method, Galerkin method and Levi method are generally employed to solve the problems of the plates fixed and supported on four sides, plates simply supported on four sides or the combination of the two. This paper intends to solve the bending problem of FGM complex structure which is locally fixed and supported by a round revolving axis. It is a triangular structure plate bearing combined loads. The solutions mentione…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号