首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
烧结方式对陶瓷结合剂金刚石磨具性能影响的研究   总被引:1,自引:0,他引:1  
本文采用低熔点的陶瓷结合剂制备金刚石磨具,研究不同烧结方式及烧成温度对磨具的弯曲强度、硬度及磨削性能等的影响,同时研究不同温度下不被包裹金刚石及被玻璃粉包裹金刚石的热失重率.通过研究发现:725℃时,不被包裹金刚石的热失重率为5.47%,玻璃粉包裹后金刚石的热失重率仅为1.27%;制备的陶瓷结合剂金刚石磨具在725℃下烧成时,埋砂烧成磨具试样的弯曲强度和洛氏硬度值比不埋砂烧成时分别提高了2.7%和1.5%;埋砂烧成比不埋砂烧成磨具的使用寿命延长10.4%~15.9%,但磨具加工一片刀具用时延长约20%,磨削过程需要砂轮修整.  相似文献   

2.
《磨料磨具通讯》2007,(10):24-25
陶瓷结合剂金刚石磨具具有金刚石和陶瓷结合剂的共同特点,与普通刚玉、碳化硅磨具相比,它的磨削力强,磨削时温度比较低,磨具磨损比较小;可以适应各种冷却液的作用;磨削时磨具的形状保持性好,磨出工件的精度高;磨具内有较多的气孔,磨削时有利于排屑和散热,不易堵塞、不易烧伤工件;磨具的自锐性比较好,修整间隔的时间长,修整比较容易。因此陶瓷结合剂金刚石磨具在国外一些发达国家的使用日益增多。  相似文献   

3.
本文研究制备Na2O-B203-Si02-Al203多元系基玻璃料,并配制成低温陶瓷结合剂,研究发现:耐火度为685℃,流动性为110%~130%,线膨胀系数为5.35×10-6℃-1的低温陶瓷结合剂具有优异的性能.制备的陶瓷结合剂金刚石砂轮在725℃烧成后,磨具的抗弯强度和洛氏硬度达到最佳值,分别58.61 MPa和77.9.用其磨削PCD刀片时锋利性好,磨削中间不需修整,砂轮耐用度高.运用扫描电子显微镜(SEM)分析了陶瓷结合剂金刚石磨具的断面形貌、磨削后磨削面形貌,表明结合剂对磨粒黏结牢固,断面组织均匀.  相似文献   

4.
本文研究了添加不同种类、不同含量的合金粉末对陶瓷结合剂的耐火度、强度、热膨胀系数、硬度及磨具的强度、韧性、硬度等的影响。试验结果表明:加入合金粉对结合剂和对磨具的影响不同。①加入低熔点合金粉,陶瓷结合剂的耐火度降低,由700℃降至650℃;②加入合金粉后,磨具的硬度和冲击强度均有较大的提高,磨具硬度测定值最大为112,冲击强度值最大为931.40kg·m/m2;③加入合金粉后,磨具的抗折强度提高,采用纯玻璃料为结合剂时,磨具的抗折强度为45.5 MPa,结合剂中加入合金粉2(8%)时,抗折强度为76 MPa。  相似文献   

5.
<正>《超硬磨具制造与应用》包含以下内容:第一章包括固结磨具、涂附磨具、膏状与液态磨具、超硬材料磨具的展望;第二章包括概述、树脂结合剂金刚石磨具、金属结合剂金刚石磨具、陶瓷结合剂金刚石磨具、金刚石研磨剂、特殊类型金刚石磨具和高精度超薄超硬磨料切割砂轮;第三章包括两大基材特性及其改性、添加(填充)与性能关系、立方氮化硼磨具的制备技术、需求与应用;  相似文献   

6.
普通陶瓷结合剂砂轮的陶瓷结合剂,与CBN、金刚石材料的耐热性和热膨胀系数相差较大,不能直接用于制作超硬材料陶瓷结合剂砂轮。本文从应用入手,对超硬材料陶瓷磨具的低温结合剂进行研究,从对不同化学成分玻璃的低温结合剂对CBN、金刚石的润湿能力的研究发现,在硅酸盐熔体中引入碱金属氧化物,按K2O→Na2O—Li2O的次序改善结合剂的湿润性,含有Pb2O3的玻璃结合剂对金刚石、CBN有较高湿润能力。  相似文献   

7.
本文介绍了金刚石和CBN磨具低熔陶瓷结合剂的原材料的基本数据以及SiO2、Al2O3、B2O3,、Na2O、Li2O、F^-等对低熔陶瓷结合剂性能的影响及部分用于金刚石和CBN磨具的低熔陶瓷结合剂配比。  相似文献   

8.
新书征订     
<正>《超硬磨具制造与应用》包含以下内容:第一章包括固结磨具、涂附磨具、膏状与液态磨具、超硬材料磨具的展望;第二章包括概述、树脂结合剂金刚石磨具、金属结合剂金刚石磨具、陶瓷结合剂金刚石磨具、金刚石研磨剂、特殊类型金刚石磨具和高精度超薄超硬磨料切割砂轮;第三章包括两大基材特性及其改性、添加(填充)与性能关系、立方氮化硼磨具的制备技术、需求与应用;第四章包括超硬磨料涂覆磨具由来与发展、制备与产品、需求与研发;  相似文献   

9.
探讨了Ti的加入对R2O-B2O3-AI2O3-SiO2系陶瓷结合剂及金刚石磨具性能的影响.通过耐火锥法、平面流淌法、扫描电镜和能谱分析、三点弯曲法、洛氏硬度计等测试手段,测定了Ti对陶瓷结合剂的耐火度、流动性以及对金刚石磨具的微观结构、抗折强度、硬度等性能的影响.结果表明:Ti的加入使结合剂熔融温度降低,线膨胀系数随...  相似文献   

10.
研究了石英粒度及其级配对陶瓷结合剂磨具性能的影响。实验结果表明,在传统生产工艺和生产成本基本不变的情况下采取以下措施,磨具性能方可得到不同程度的提高:(1)磨料采用混合粒度时磨具性能比采用传统单一粒度时性能好,抗折强度由19,85提高到21.62,提高了8.92%;抗拉强度由8.61提高到9.57,提高了11.15%;(2)粘土、长石和石英一起球磨不同时间,结合剂对磨具性能影响不明显,只有采用将硬质石英分别球磨不同时间后,再与其它成分混合,磨具性能才有明显的不同程度的提高;(3)在一定烧成制度下,石英粒度控制在一定范围内有利于磨具性能的提高。最佳粒度范围是在250—320目之间;(4)石英粒度级配选择合适时磨具性能比选择单一细粒度石英时有一定程度的提高。  相似文献   

11.
为提高陶瓷结合剂对金刚石磨料的把持力,将Cu-Sn-Ti钎料添加到SiO2-Al2O3-B2O3-Li2O陶瓷结合剂中制得新型陶瓷-金属结合剂金刚石节块。表征其显微形貌、收缩率、物相组成和力学性能,以确定烧结温度;通过SEM、XRD分析,研究陶瓷结合剂与Cu-Sn-Ti钎料的体积比变化对金刚石节块性能的影响。结果表明:金属陶瓷结合剂与金刚石之间生成了TiC,有助于提高结合剂对金刚石的把持力,从而提高节块的抗弯强度;当烧结温度为950 ℃,陶瓷结合剂与Cu-Sn-Ti钎料体积比为1∶1时,两者形成致密的玻璃网络,节块收缩率为3%,抗弯强度达到最大值64.4 MPa。   相似文献   

12.
陶瓷结合剂与金刚石高温下的界面结合机理研究   总被引:2,自引:1,他引:1  
本文研究了陶瓷结合剂与金刚石的界面反应、界面结构和结合状况.通过对改性Li2O-Al2O3-SiO2微晶玻璃和B2O3-PbO-ZnO-SiO2低熔玻璃镀钛、不镀钛金刚石试样的电镜分析、XRD分析以及两种结合结合剂与镀钛、不镀钛金刚石试样的抗折强度测定,研究了结合剂(Li2O-Al2O3-SiO2微晶玻璃和B2O3-PbO-ZnO-SiO2玻璃)与金刚石(镀钛和不镀钛)的结合机理和结合状况.发现:改性Li2O-Al2O3-SiO2玻璃经过合适的热处理工艺能在金刚石试样中出现以Li2Al2Si3O10为主晶相的微晶体,试条的抗折强度是B2O3-PbO-ZnO-SiO2低熔玻璃金刚石试样的2.5倍以上;镀钛金刚石与微晶玻璃结合剂之间产生化学结合,抗折强度比不镀钛金刚石试条提高20%以上;而对B2O3-PbO-ZnO-SiO2玻璃结合剂而言,金刚石表面镀钛对试条的抗折强度的提高无明显作用.  相似文献   

13.
采用空间占位法和固态粒子烧结法制备具有蜂窝状结构的超细粒度的陶瓷结合剂金刚石砂轮。通过考察砂轮的微观形貌、气孔率和抗折强度等性能,研究烧结制度对制备砂轮蜂窝状结构的影响。结果表明:制备具有蜂窝状结构的砂轮的最佳烧结温度为750 ℃,保温时间为90 min,得到的砂轮的孔隙率约为78%,抗折强度约15 MPa。   相似文献   

14.
采用自行设计的陶瓷结合剂金刚石砂轮加工硬质合金顶锤,用低浓度金刚石砂轮加工其平面,用高浓度金刚石砂轮加工其外圆,并与树脂金刚石砂轮的磨削加工进行对比。实验结果表明:同等条件下陶瓷金刚石砂轮的锋利度要高于树脂金刚石砂轮的锋利度,其加工速度更快,且磨削产生的热要远低于树脂砂轮的;平面磨削中,陶瓷金刚石砂轮通过调整工艺参数或调细金刚石粒度能够获得更好的表面粗糙度;外圆磨削中,陶瓷砂轮较树脂砂轮加工效率提升约50%,当陶瓷金刚石砂轮浓度达到200%时,砂轮性价比最高。   相似文献   

15.
采用溶胶–凝胶法制备陶瓷结合剂粉末和陶瓷结合剂/金刚石混合粉末以及相应的块体材料。研究分散剂(十二烷基苯磺酸钠)质量分数为0~4.02%时,其对陶瓷结合剂物相、耐火度、弯曲强度和热膨胀系数等的影响,以及其对M2.5/5金刚石在陶瓷结合剂/金刚石混合粉末中分散性的影响。结果表明:分散剂质量分数为1.34%时,陶瓷结合剂的耐火度、弯曲强度和热膨胀系数与未添加分散剂时相比未发生明显变化,其中耐火度为700℃、弯曲强度为45 MPa、热膨胀系数为4.3×10-6-1;当分散剂的质量分数从1.34%增加至4.02%时,陶瓷结合剂的耐火度降至600℃,弯曲强度降至28 MPa,热膨胀系数增至7.5×10-6-1;分散剂质量分数为1.34%时,M2.5/5金刚石均匀分散在陶瓷结合剂/金刚石复合材料中,且未引起复合材料的性能变化。  相似文献   

16.
In this research, the advantages and disadvantages of the cylindrical grinding process of Polycrystalline Diamond Compacts (short for PDC) with vitrified and resin bond diamond grinding wheel are compared. The research results show that the vitrified bond diamond grinding wheels, which use Ti-coated diamond grains as abrasive and glass ceramic as bond, have many advantages in grinding PDC . Compared with resin diamond grinding wheel,vitrified bond wheels lead to 35% grinding cost reduced, 40% grinding time of each PDC saved, and the size precision of PDC improved (from ±0.03mm to ±0.01mm). When grinding feed is <0.10 mm, the grinding ratio increases with increased grinding feed. However, when the grinding feed exceeds 0.10 mm, the grinding radio decreases rapidly with the increasing of grinding feed. The disadvantage of this kind of grinding wheel is that the brightness of the ground PDC cylinder is not as shining as that processed by resin bond diamond grinding wheel.  相似文献   

17.
分别以Ti/Si/2TiC混合粉体和Ti3SiC2单相粉体作为结合剂原料,采用放电等离子体烧结技术合成了TiC/Ti3SiC2结合剂金刚石复合材料,探讨不同的结合剂原料和保温时间对TiC/Ti3SiC2结合剂金刚石复合材料的物相构成、微观形貌以及磨削性能的影响。结果表明:采用Ti/Si/2TiC为结合剂原料,保温1 min时,会形成较多量的Ti3SiC2,Ti3SiC2基体与金刚石结合良好,二者之间没有孔隙;当保温5 min时,Ti3SiC2发生分解,基体主相转变为TiC,同时有一定量的Si,金刚石表面被侵蚀,形成凹凸不平的表面。采用Ti3SiC2为结合剂原料时,Ti3SiC2基体发生严重的分解,生成TiC和Si;金刚石与基体间存在一个过渡层,厚度约15 μm。Ti/Si/2TiC为结合剂原料保温1 min时试样的磨耗比值最大,为1 128。单相Ti3SiC2为结合剂的2个试样的磨耗比值约为100左右。   相似文献   

18.
为改善低温陶瓷结合剂的不足,采用粉末冶金的方法将铝粉添加到低温陶瓷结合剂中,使用真空热压烧结炉进行烧结,探究铝粉改性低温陶瓷结合剂的力学性能和显微结构。结果表明:当金属铝粉质量分数为20%时,结合剂的抗折强度达到116.32 MPa,比低温陶瓷结合剂抗折强度提高了42%;结合剂的平均抗冲击强度为13.01 kJ/m2,比低温陶瓷结合剂的提高了414%。铝粉的添加对结合剂的密度影响不明显,但随着铝粉质量分数的增加, 结合剂的硬度整体呈下降趋势。铝粉颗粒在低温陶瓷结合剂中均匀分散,并且以金属铝的形态存在,分散性较好,具有颗粒增韧的作用。结合剂中金属相和低温陶瓷结合剂的界面处元素扩散形成过渡带,两者互相融合,且结合情况良好。   相似文献   

19.
在芯片制程的后道阶段,通过超精密晶圆减薄工艺可以有效减小芯片封装体积,导通电阻,改善芯片的热扩散效率,提高其电气性能、力学性能。目前的主流工艺通过超细粒度金刚石砂轮和高稳定性超精密减薄设备对晶圆进行减薄,可实现大尺寸晶圆的高精度、高效率、高稳定性无损伤表面加工。重点综述了目前超精密晶圆减薄砂轮的研究进展,在磨料方面综述了机械磨削用硬磨料和化学机械磨削用软磨料的研究现状,包括泡沫化金刚石、金刚石团聚磨料、表面微刃金刚石的制备方法及磨削性能,同时归纳总结了软磨料砂轮的化学机械磨削机理及材料去除模型。在结合剂研究方面,综述了金属、树脂和陶瓷3种结合剂的优缺点,以及在晶圆减薄砂轮上的应用,重点综述了目前在改善陶瓷结合剂的本征力学强度及与金刚石之间的界面润湿性方面的研究进展。在晶圆减薄超细粒度金刚石砂轮制备方面,由于微纳金刚石的表面能较大,采用传统工艺制备砂轮会导致磨料发生团聚,影响加工质量。在此基础上,总结论述了溶胶–凝胶法、高分子网络凝胶法、电泳沉积法、凝胶注模法、结构化砂轮等新型工艺方法在超细粒度砂轮制备方面的应用研究,同时还综述了目前不同的晶圆减薄工艺及超精密减薄设备的研究进展,并指出未来半导体加工工具及装备的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号