共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
多接入边缘计算(Multi-access Edge Computing,MEC)和无线携能通信可有效提高用户的服务质量和体验。在计算、通信和能量等资源的约束条件下,用户匹配是优化MEC任务卸载时系统效用的重要方法。针对无线携能通信的MEC网络结构,综合考虑用户的需求差异性和多元化能量供给,建立了基于计算资源、传输资源和能量资源的系统效用函数;以系统效用最大化为目标,采用基于多维背包理论的多轮拍卖,提出了一种适用于多用户和多网络边缘服务器的用户匹配算法。仿真验证了所提用户匹配算法的有效性与可靠性,结果表明所提匹配算法可优化系统资源配置,有效提高整体性能。 相似文献
3.
能信协同超材料(Collaborative Power and Information Metamaterials, CPIM)是将电磁超材料与无线能量传输(Wireless Power Transfer, WPT)、无线能量收集(Wireless Energy Harvesting, WEH)和无线信息传输(Wireless Information Transfer, WIT)有机融合的前沿领域,旨在实现能量与信息的高效协同传输和控制。CPIM器件凭借其灵活调控电磁波的能力和低成本、低能耗、低重量的优点可以有效解决大量低功耗设备的供能问题,同时保证高质量的通信传输。将能量与信息的多重功能融合于可操控的超材料器件中,以实现更紧凑、高效的能信协同传输效应。针对CPIM的工作基本原理和广泛实用性的应用场景,文章围绕WPT、WEH、WIT三大核心部分进行深入讨论和分析,并阐述了CPIM器件的工作原理和设计方法。最后给出了CPIM在未来的潜在研究和应用方向。文章旨在为研究人员提供基于超材料的能信协同传输技术的趋势和应用分析,推动无线通信和能源系统向更高效、智能化的方向发展。 相似文献
4.
将大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)技术与无线能量传输(Wireless Power Transfer,WPT)技术相结合,能够帮助实现节能降耗,契合国内外绿色通信发展浪潮。针对WPT技术在大规模MIMO研究领域的应用问题,总结了当前携能大规模MIMO技术的研究现状及发展趋势,从频效、能效、安全性等多个方面对携能大规模MIMO资源分配算法进行综述,探讨了学术界在携能大规模MIMO资源分配算法上的重要研究成果。在现有算法研究进展分析的基础上,对当前研究中携能大规模MIMO资源分配算法研究情况存在的问题进行分析,并对未来的发展方向进行了展望。 相似文献
5.
针对高铁通信系统中链路频繁切换、基站位置偏远等固有劣势导致感知质量下降及运维成本高等问题,提出了一种融合能量收集与边缘缓存的高铁通信系统架构。为实现保证通信服务质量的同时优化系统能耗这个目标,以通信、缓存和能量资源为约束,构建联合系统信息服务量与系统电网能量消耗的收益函数,采用拉格朗日乘子法获得无线携能传输时间分配和基站发射功率分配方案,以Karush-Kuhn-Tucker(KKT)条件为理论基础推导基站缓存数据量与最优时间分配方案之间的关系,并将收益函数简化为仅与基站缓存策略相关的优化问题。仿真结果表明,所提出的基于贪婪算法的缓存策略能够有效提升系统通信服务质量并降低能耗,在不同偏度因子下,目标函数值相比现有概率缓存策略平均提升至少5%,同时系统电网能量消耗可降低约3%。 相似文献
6.
人们对后3G的要求是:在全球范围内实现无缝覆盖,进行包括语音、文本、图像、视频等在内的高速多媒体通信。为此,在有限频谱资源条件下,必须缩短无线信号的传输半径,极大限度地复用频谱资源,提高单位空间的信道容量。采用各种先进的无线传输技术的无线传输网络则在中、小范围内提供高速率、高质量的无线移动通信服务。因而WLAN和WPAN的需求和应用在不断增长,超宽带(UWB,ultra wide-band)等短距离、高空间容量的技术日益兴起,成为目前无线通信领域的热点。UWB的核心是冲激无线电技术,即利用持续时间非常短(纳秒、亚纳秒级)的脉冲波形来… 相似文献
7.
Mobile cloud computing is a promising approach to improve the mobile device's efficiency in terms of energy consumption and execution time. In this context, mobile devices can offload the computation‐intensive parts of their applications to powerful cloud servers. However, they should decide what computation‐intensive parts are appropriate for offloading to be beneficial instead of local execution on the mobile device. Moreover, in the real world, different types of clouds/servers with heterogeneous processing speeds are available that should be considered for offloading. Because making offloading decision in multisite context is an NP‐complete, obtaining an optimal solution is time consuming. Hence, we use a near optimal decision algorithm to find the best‐possible partitioning for offloading to multisite clouds/servers. We use a genetic algorithm and adjust it for multisite offloading problem. Also, genetic operators are modified to reduce the ineffective solutions and hence obtain the best‐possible solutions in a reasonable time. We evaluated the efficiency of the proposed method using graphs of real mobile applications in simulation experiments. The evaluation results demonstrate that our proposal outperforms other counterparts in terms of energy consumption, execution time, and weighted cost model. 相似文献
8.
9.
Paul J. M. Havinga Gerard J. M. Smit 《Wireless Communications and Mobile Computing》2001,1(2):165-184
In this paper we identify the most prominent problems of wireless multimedia networking and present several state‐of‐the‐art solutions with a focus on energy efficiency. Three key problems in networked wireless multimedia systems are: (1) the need to maintain a minimum quality of service over time‐varying channels; (2) to operate with limited energy resources; and (3) to operate in a heterogeneous environment. We identify two main principles to solve these problems. The first principle is that energy efficiency should involve all layers of the system. Second, Quality of Service is an essential mechanism for mobile multimedia systems not only to give users an adequate level of service, but also as a tool to achieve an energy‐efficient system. Owing to the dynamic wireless environment, adaptability of the system will be a key issue in achieving this. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
10.
11.
12.
A computation offloading scheme based on edge-cloud computing was proposed to improve the system utility of multiuser computation offloading.This scheme improved the system utility while considering the optimization of edge-cloud resources.In order to tackle the problems of computation offloading mode selection and edge-cloud resource allocation,a greedy algorithm based on submodular theory was developed by fully exploiting the computing and communication resources of cloud and edge.The simulation results demonstrate that the proposed scheme effectively reduces the delay and energy consumption of computing tasks.Additionally,when computing tasks are offloaded to edge and cloud from devices,the proposed scheme still maintains stable system utilities under ultra-limited resources. 相似文献
13.
YOU Changsheng 《中兴通讯技术》2020,26(4):2-5
通过对移动边缘计算(MEC)网络的基本原理、应用场景,以及通信和计算的研究模型的阐述,提出了针对单用户和多用户MEC系统的绿色节能频谱和计算资源综合管理方案。通过分析当前MEC技术的局限和挑战,认为MEC和人工智能技术的有机结合,能够有效提高未来网络的计算性能。 相似文献
14.
针对具有依赖关系的计算密集型应用任务面临的卸载决策难题,提出了一种基于优先级的深度优先搜索调度策略。考虑到用户能量受限和移动性,构建了一种联合用户下行能量捕获和上行计算任务卸载的网络模型,并在此基础上建立了端到端优化目标函数。结合任务优先级及时延约束,利用深度强化学习自学习的优势,将任务卸载决策问题建模为马尔科夫模型,并设计了基于任务相关性的Dueling Double DQN(D3QN)算法对问题进行求解。仿真数据表明,所提算法较其他算法能够满足更多用户的时延要求,并能减少9%~10%的任务执行时延。 相似文献
15.
For the unmanned aerial vehicle (UAV)-assisted edge computing system,a two-stage alternative algorithm was proposed to solve the formulated complex non-convex problem.Firstly,the formulated non-linear fractional programming problem was reformulated to the equivalent parametric problem by using Dinkelbach method.Secondly,two sub-problems were further considered based on it.By employing the Lagrange duality method,the closed-form solutions for the central processing unit frequencies and the number of data bits were derived.Finally,based on the solutions obtained,the conditions that the source node prefers to offload/share its data and the relay chooses to forward the computation results,as well as the approaches to achieve high energy efficiency were revealed.Numerical results demonstrate that the proposed design can achieve a performance improvement of up to 20 times over the conventional schemes. 相似文献
16.
17.
Gerges M. Salama Alshimaa H. Ismail Tarek Abed Soliman Hesham F.A. Hamed Nirmeen A. El‐Bahnasawy 《International Journal of Communication Systems》2020,33(12)
In 5G cloud computing, the most notable and considered design issues are the energy efficiency and delay. The majority of the recent studies were dedicated to optimizing the delay issue by leveraging the edge computing concept, while other studies directed its efforts towards realizing a green cloud by minimizing the energy consumption in the cloud. Active queue management‐based green cloud model (AGCM) as one of the recent green cloud models reduced the delay and energy consumption while maintaining a reliable throughput. Multiaccess edge computing (MEC) was established as a model for the edge computing concept and achieved remarkable enhancement to the delay issue. In this paper, we present a handoff scenario between the two cloud models, AGCM and MEC, to acquire the potential gain of such collaboration and investigate its impact on the cloud fundamental constraints; energy consumption, delay, and throughput. We examined our proposed model with simulation showing great enhancement for the delay, energy consumption, and throughput over either model when employed separately. 相似文献
18.
5G与边缘计算等应用场景的兴起,使得计算、存储等基础IT资源离散部署与多级部署成为一大发展趋势,如何结合网络基础设施为用户提供更为便捷的、定制化的专属服务,提高整体资源利用率,成为网络技术发展的新方向。重点分析了网络虚拟化的特征与发展、资源发展与融合趋势以及新兴业务对资源供给新需求等,提出了一种基于多维资源融合化的网络虚拟化架构,即通过在网络虚拟化架构中引入资源发现与资源交易过程,将多方、异构的资源有机整合成统一资源平面,在此基础上根据用户需求进行资源切割与虚拟化,以适应新兴业务对资源需求快速灵活的特点,并能够有效提高资源利用效率,降低运营成本。由于资源联合优化涉及多个领域的研究,网络虚拟化架构将随着业务需求与商业模式的发展而不断完善,以期为未来业务发挥重要作用。 相似文献
19.
Kentaro Yanagihara Jumpei Taketsugu Kiyoshi Fukui Shigeru Fukunaga Shinsuke Hara Ken-ichi Kitayama 《Wireless Personal Communications》2007,40(3):401-415
In this paper, we propose a new energy efficient clustering scheme with transmission power control named “EACLE” (Energy-Aware
CLustering scheme with transmission power control for sEnsor networks) for wireless sensor networks, which are composed of
the following three components; “EACLE clustering” is a distributed clustering method by means of transmission power control,
“EACLE routing” builds a tree rooted at a sink node and sets the paths from sensor nodes taking energy saving into consideration,
and “EACLE transmission timing control” changes the transmission timing with different levels of transmission power to avoid
packet collisions and facilitates packet binding.
With an indoor wireless channel model which we obtained from channel measurement campaigns in rooms and corridors and an energy
consumption model which we obtained from a measurement of a chipset, we performed computer simulations to investigate the
performance of EACLE in a realistic environment. Our simulation results indicate that EACLE outperforms a conventional scheme
such as EAD (Energy-Aware Data-centric routing) in terms of communication success rate and energy consumption. Furthermore,
we fully discuss the impact of transmission power and timing control on the performance of EACLE. 相似文献
20.
5.8GHz回旋波整流器高频互作用区的研究 总被引:1,自引:0,他引:1
对5.8 GHz回旋波整流器的高频互作用区进行了设计与研究;运用CST对回旋波整流器高频互作用区的场分布状况进行了仿真;并运用MAGIC对其进行了粒子模拟。最后,设计出了工作在5.8 GHz,具有高能量转换效率的回旋波整流器高频互作用区 相似文献