首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Computation Partitioning in Mobile Cloud Computing: A Survey   总被引:1,自引:0,他引:1  
Mobile devices are increasingly interacting with clouds,and mobile cloud computing has emerged as a new paradigm.An central topic in mobile cloud computing is computation partitioning,which involves partitioning the execution of applications between the mobile side and cloud side so that execution cost is minimized.This paper discusses computation partitioning in mobile cloud computing.We first present the background and system models of mobile cloud computation partitioning systems.We then describe and compare state-of-the-art mobile computation partitioning in terms of application modeling,profiling,optimization,and implementation.We point out the main research issues and directions and summarize our own works.  相似文献   

2.
移动边缘计算(mobile edge computing,MEC)是一种新兴的计算范式。设备将计算任务卸载到MEC服务器,满足业务时延需求,延长设备电池寿命,解决设备资源受限问题。对目前MEC系统中计算卸载方案的研究现状和成果进行了总结,分析了存在的问题和挑战,并进一步探讨未来MEC计算卸载的研究方向。  相似文献   

3.
前言     
人们对后3G的要求是:在全球范围内实现无缝覆盖,进行包括语音、文本、图像、视频等在内的高速多媒体通信。为此,在有限频谱资源条件下,必须缩短无线信号的传输半径,极大限度地复用频谱资源,提高单位空间的信道容量。采用各种先进的无线传输技术的无线传输网络则在中、小范围内提供高速率、高质量的无线移动通信服务。因而WLAN和WPAN的需求和应用在不断增长,超宽带(UWB,ultra wide-band)等短距离、高空间容量的技术日益兴起,成为目前无线通信领域的热点。UWB的核心是冲激无线电技术,即利用持续时间非常短(纳秒、亚纳秒级)的脉冲波形来…  相似文献   

4.
针对车载环境下有限的网络资源和大量用户需求之间的矛盾,提出了智能驱动的车载边缘计算网络架构,以实现网络资源的全面协同和智能管理.基于该架构,设计了任务卸载和服务缓存的联合优化机制,对用户任务卸载以及计算和缓存资源的调度进行了建模.鉴于车载网络的动态、随机和时变的特性,利用异步分布式强化学习算法,给出了最优的卸载决策和资...  相似文献   

5.
随着智能交通的快速发展和车联网中数据流量爆炸式的增长,汽车终端请求卸载的任务对时延和带宽有了更加严苛的要求。在现有的云计算服务模式中,车辆可以访问云服务器来获得强大的计算、存储和网络资源,但缺点是通信传输时延较大,仅依靠云计算可能会导致过度的延迟。为了更加合理利用资源、减小时延、优化卸载策略,提出了一种基于粒子群优化算法的“车-边-云”协同卸载方案。首先通过接入点附近的软件定义网络(Software Define Network,SDN)控制器根据终端用户附近边缘节点、本地终端和云计算节点的计算资源和容量情况得出最优的卸载策略,充分利用本地、移动边缘计算(Mobile Edge Computing,MEC)设备、云端的计算资源,然后通过粒子群优化算法得出“车-边-云”各计算节点的卸载系数,即最优卸载策略。实验结果表明,相比于其他卸载策略,所提的卸载机制对时延优化效果明显,提高了计算资源的利用率。  相似文献   

6.
    
Internet of Things (IoT) has very remarkable advantages over customary communication technologies. However, IoT suffers from different issues, such as limited battery life, low storage capacity, and little computing capacity. For this reason, in many IoT applications and devices, we require an alternative unit to execute the tasks from the user's device and return results. In general, the problem of limited resources by transferring the computation workload to other devices/systems with better resources is addressed by offloading computation. It can be focused on improving the application, extending battery life, or expanding storage capacity. The offloading operation can be performed based on various quality of service (QoS) parameters that contain computational demands for load balancing, response time, application, energy consumption, latency, and other things. Moreover, the systematic literature review (SLR) method is used to identify, assess, and integrate findings from all relevant studies that address one or more research questions on IoT offloading and conduct a comprehensive study of empirical research on offloading techniques. However, we present a new taxonomy for them based on offloading decision mechanisms and overall architectures. Furthermore, we offer a parametric comparison for the offloading methods. As well, we present the future direction and research opportunities in IoT offloading computation. This survey will assist academics and practitioners to directly understand the progress in IoT offloading.  相似文献   

7.
李斌  徐天成 《电讯技术》2023,63(12):1894-1901
针对具有依赖关系的计算密集型应用任务面临的卸载决策难题,提出了一种基于优先级的深度优先搜索调度策略。考虑到用户能量受限和移动性,构建了一种联合用户下行能量捕获和上行计算任务卸载的网络模型,并在此基础上建立了端到端优化目标函数。结合任务优先级及时延约束,利用深度强化学习自学习的优势,将任务卸载决策问题建模为马尔科夫模型,并设计了基于任务相关性的Dueling Double DQN(D3QN)算法对问题进行求解。仿真数据表明,所提算法较其他算法能够满足更多用户的时延要求,并能减少9%~10%的任务执行时延。  相似文献   

8.
基于拉格朗日的计算迁移能耗优化策略   总被引:1,自引:0,他引:1  
随着移动网络技术的发展和智能终端的普及应用,移动边缘计算已成为云计算的一个重要应用。计算迁移策略已成为移动边缘计算服务的关键问题之一。以移动终端总的计算时间和移动终端能耗最小化为目标,将移动终端的计算迁移资源划分问题建模为一个凸优化问题,运用拉格朗日乘子法进行求解,提出基于阈值的迁移优化策略模型。仿真实验表明,本迁移优化策略模型能有效平衡本地计算和迁移计算之间的关系,为移动边缘计算中执行计算密集型应用提供保障。  相似文献   

9.
    
The rapid growth of mobile internet services has yielded a variety of computation-intensive applications such as virtual/augmented reality. Mobile Edge Computing (MEC), which enables mobile terminals to offload computation tasks to servers located at the edge of the cellular networks, has been considered as an efficient approach to relieve the heavy computational burdens and realize an efficient computation offloading. Driven by the consequent requirement for proper resource allocations for computation offloading via MEC, in this paper, we propose a Deep-Q Network (DQN) based task offloading and resource allocation algorithm for the MEC. Specifically, we consider a MEC system in which every mobile terminal has multiple tasks offloaded to the edge server and design a joint task offloading decision and bandwidth allocation optimization to minimize the overall offloading cost in terms of energy cost, computation cost, and delay cost. Although the proposed optimization problem is a mixed integer nonlinear programming in nature, we exploit an emerging DQN technique to solve it. Extensive numerical results show that our proposed DQN-based approach can achieve the near-optimal performance.  相似文献   

10.
    
Mobile cloud computing is a promising approach to improve the mobile device's efficiency in terms of energy consumption and execution time. In this context, mobile devices can offload the computation‐intensive parts of their applications to powerful cloud servers. However, they should decide what computation‐intensive parts are appropriate for offloading to be beneficial instead of local execution on the mobile device. Moreover, in the real world, different types of clouds/servers with heterogeneous processing speeds are available that should be considered for offloading. Because making offloading decision in multisite context is an NP‐complete, obtaining an optimal solution is time consuming. Hence, we use a near optimal decision algorithm to find the best‐possible partitioning for offloading to multisite clouds/servers. We use a genetic algorithm and adjust it for multisite offloading problem. Also, genetic operators are modified to reduce the ineffective solutions and hence obtain the best‐possible solutions in a reasonable time. We evaluated the efficiency of the proposed method using graphs of real mobile applications in simulation experiments. The evaluation results demonstrate that our proposal outperforms other counterparts in terms of energy consumption, execution time, and weighted cost model.  相似文献   

11.
    
The Mobile Cloud Computing paradigm has revolutionized the concepts of mobile computing and the Internet of Things (IoT). This paradigm allows outsourcing the workload of mobile devices, or other connected “things,” to be computed in the Cloud. Currently, outsourcing possibilities have been widely developed making available computing platforms at different network layers. In a consequence of that, a virtual increasing of the performance and a homogenization of the computing capabilities of the devices are produced. The research described in this work presents a review of the state of the art about recent works, the main operational concerns, challenges, and open issues of this paradigm in order to update the border of knowledge on this topic. As a result, a critical analysis is conducted, and new research directions are discussed. The findings provide value-added to the scientific community and, therefore it could be helpful for other researches in these topics, especially given the rising popularity of IoT platforms.  相似文献   

12.
为提高计算任务卸载的效率,提出了一种基于D2D通信、移动边缘计算和云计算的分层任务卸载框架,并引入D2D协作中继技术辅助用户接入远端计算资源。针对所提任务卸载框架在多用户场景中可能存在上行通信拥塞、边缘计算资源受限、D2D复用干扰和云计算回程时延等问题,设计了一种基于博弈论的卸载调度和负载均衡方案,充分利用了所提任务卸载框架中各层计算和通信资源。仿真结果表明,所提方案能够有效降低端到端时延和卸载能耗,并在资源受限的条件下具有良好的稳定性。  相似文献   

13.
移动边缘计算(MEC)通过将计算任务卸载到MEC服务器上,在缓解智能移动设备计算负载的同时,可以降低服务时延。然而目前在MEC系统中,关于任务卸载和资源分配仍然存在以下问题:1)边缘节点间缺乏协作;2)计算任务到达与实际环境中动态变化的特征不匹配;3)协作式任务卸载和资源分配动态联合优化问题。为解决上述问题,文章在协作式MEC架构的基础上,提出了一种基于多智能体的深度确定性策略梯度算法(MADDPG)的任务卸载和资源分配算法,最小化系统中所有用户的长期平均成本。仿真结果表明,该算法可以有效降低系统的时延及能耗。  相似文献   

14.
鲜永菊  汪帅鸽  汪洲  谭文光 《电讯技术》2024,(11):1711-1717
针对车辆的移动和任务流量的动态变化会对周围智能车辆选择造成严重干扰的问题,提出了一种基于库恩-曼克尔斯(Kuhn-Munkres, KM)算法的多车辆协同任务计算方案。首先,通过对车辆的移动分析,建立了动态车辆选择模型;然后,根据层次分析法和KM算法,在通信时间限制和计算资源约束下,求解多任务最优匹配,以实现任务的总计算时间最小化。仿真实验结果表明,相比已有卸载方案,所提方案能够有效减少任务的总计算时间,并降低任务卸载计算的失败率。  相似文献   

15.
惠敏  陈健  吕璐  杨龙  叶迎晖 《电讯技术》2025,65(5):817-825
空中计算网络(Aerial Computing Network,ACN)整合空中接入网和移动边缘计算,利用异构空中平台实现本地化就近服务,可有效支持广域范围内海量用户的多样化低时延业务请求。介绍了ACN的3类关键空中平台,并从平台高度、成本、复杂度、适用业务类型等方面对各空中平台进行对比分析。总结了现有ACN的网络架构,梳理了网络架构演进方向。最后,结合ACN的重要应用场景,指出了ACN的未来研究方向,以期为后续研究提供借鉴与启示。  相似文献   

16.
基于单一边缘节点计算、存储资源的有限性及大数据场景对高效计算服务的需求,本文提出了一种基于深度强化学习的云边协同计算迁移机制.具体地,基于计算资源、带宽和迁移决策的综合性考量,构建了一个最小化所有用户任务执行延迟与能耗权重和的优化问题.基于该优化问题提出了一个异步云边协同的深度强化学习算法,该算法充分利用了云边双方的计...  相似文献   

17.
基于能量收集的MEC系统的计算卸载策略研究   总被引:1,自引:0,他引:1  
通过利用整数规划算法和贪婪策略对基于李雅普诺夫优化的动态计算卸载(Lyapunov Opti-mization-based Dynamic Computation Offloading,LODCO)算法进行升级和重构,使其适用于具多用户和多服务器的移动边缘计算系统,并通过选择各移动设备的执行模式,来降低执行成本.仿真结...  相似文献   

18.
    
An ad hoc mobile cloud had been proposed to offload workload to neighboring mobile devices for resource sharing.The issues that whether to offload or not was addressed,how to select the suitable mobile device to offload,and how to assign workload.Game theoretic approach was used to formulate this problem,and then,a distributed scheme was designed to achieve the optimal solution.The experimental results validate the rightness and effectiveness of proposed scheme.  相似文献   

19.
    
As a promising computing paradigm, Mobile Edge Computing (MEC) provides communication and computing capability at the edge of the network to address the concerns of massive computation requirements, constrained battery capacity and limited bandwidth of the Internet of Things (IoT) systems. Most existing works on mobile edge task ignores the delay sensitivities, which may lead to the degraded utility of computation offloading and dissatisfied users. In this paper, we study the delay sensitivity-aware computation offloading by jointly considering both user's tolerance towards delay of task execution and the network status under computation and communication constraints. Specifically, we use a specific multi-user and multi-server MEC system to define the latency sensitivity of task offloading based on the analysis of delay distribution of task categories. Then, we propose a scoring mechanism to evaluate the sensitivity-dependent utility of task execution and devise a Centralized Iterative Redirection Offloading (CIRO) algorithm to collect all information in the MEC system. By starting with an initial offloading strategy, the CIRO algorithm enables IoT devices to cooperate and iteratively redirect task offloading decisions to optimize the offloading strategy until it converges. Extensive simulation results show that our method can significantly improve the utility of computation offloading in MEC systems and has lower time complexity than existing algorithms.  相似文献   

20.
    
Together with an explosive growth of the mobile applications and emerging of cloud computing concept, mobile cloud computing (MCC) has been introduced to be a potential technology for mobile services. MCC integrates the cloud computing into the mobile environment and overcomes obstacles related to the performance (e.g., battery life, storage, and bandwidth), environment (e.g., heterogeneity, scalability, and availability), and security (e.g., reliability and privacy) discussed in mobile computing. This paper gives a survey of MCC, which helps general readers have an overview of the MCC including the definition, architecture, and applications. The issues, existing solutions, and approaches are presented. In addition, the future research directions of MCC are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号