共查询到20条相似文献,搜索用时 0 毫秒
1.
Computation Partitioning in Mobile Cloud Computing: A Survey 总被引:1,自引:0,他引:1
Mobile devices are increasingly interacting with clouds,and mobile cloud computing has emerged as a new paradigm.An central topic in mobile cloud computing is computation partitioning,which involves partitioning the execution of applications between the mobile side and cloud side so that execution cost is minimized.This paper discusses computation partitioning in mobile cloud computing.We first present the background and system models of mobile cloud computation partitioning systems.We then describe and compare state-of-the-art mobile computation partitioning in terms of application modeling,profiling,optimization,and implementation.We point out the main research issues and directions and summarize our own works. 相似文献
2.
3.
人们对后3G的要求是:在全球范围内实现无缝覆盖,进行包括语音、文本、图像、视频等在内的高速多媒体通信。为此,在有限频谱资源条件下,必须缩短无线信号的传输半径,极大限度地复用频谱资源,提高单位空间的信道容量。采用各种先进的无线传输技术的无线传输网络则在中、小范围内提供高速率、高质量的无线移动通信服务。因而WLAN和WPAN的需求和应用在不断增长,超宽带(UWB,ultra wide-band)等短距离、高空间容量的技术日益兴起,成为目前无线通信领域的热点。UWB的核心是冲激无线电技术,即利用持续时间非常短(纳秒、亚纳秒级)的脉冲波形来… 相似文献
4.
5.
随着智能交通的快速发展和车联网中数据流量爆炸式的增长,汽车终端请求卸载的任务对时延和带宽有了更加严苛的要求。在现有的云计算服务模式中,车辆可以访问云服务器来获得强大的计算、存储和网络资源,但缺点是通信传输时延较大,仅依靠云计算可能会导致过度的延迟。为了更加合理利用资源、减小时延、优化卸载策略,提出了一种基于粒子群优化算法的“车-边-云”协同卸载方案。首先通过接入点附近的软件定义网络(Software Define Network,SDN)控制器根据终端用户附近边缘节点、本地终端和云计算节点的计算资源和容量情况得出最优的卸载策略,充分利用本地、移动边缘计算(Mobile Edge Computing,MEC)设备、云端的计算资源,然后通过粒子群优化算法得出“车-边-云”各计算节点的卸载系数,即最优卸载策略。实验结果表明,相比于其他卸载策略,所提的卸载机制对时延优化效果明显,提高了计算资源的利用率。 相似文献
6.
Arash Heidari Mohammad Ali Jabraeil Jamali Nima Jafari Navimipour Shahin Akbarpour 《International Journal of Communication Systems》2020,33(14)
Internet of Things (IoT) has very remarkable advantages over customary communication technologies. However, IoT suffers from different issues, such as limited battery life, low storage capacity, and little computing capacity. For this reason, in many IoT applications and devices, we require an alternative unit to execute the tasks from the user's device and return results. In general, the problem of limited resources by transferring the computation workload to other devices/systems with better resources is addressed by offloading computation. It can be focused on improving the application, extending battery life, or expanding storage capacity. The offloading operation can be performed based on various quality of service (QoS) parameters that contain computational demands for load balancing, response time, application, energy consumption, latency, and other things. Moreover, the systematic literature review (SLR) method is used to identify, assess, and integrate findings from all relevant studies that address one or more research questions on IoT offloading and conduct a comprehensive study of empirical research on offloading techniques. However, we present a new taxonomy for them based on offloading decision mechanisms and overall architectures. Furthermore, we offer a parametric comparison for the offloading methods. As well, we present the future direction and research opportunities in IoT offloading computation. This survey will assist academics and practitioners to directly understand the progress in IoT offloading. 相似文献
7.
针对具有依赖关系的计算密集型应用任务面临的卸载决策难题,提出了一种基于优先级的深度优先搜索调度策略。考虑到用户能量受限和移动性,构建了一种联合用户下行能量捕获和上行计算任务卸载的网络模型,并在此基础上建立了端到端优化目标函数。结合任务优先级及时延约束,利用深度强化学习自学习的优势,将任务卸载决策问题建模为马尔科夫模型,并设计了基于任务相关性的Dueling Double DQN(D3QN)算法对问题进行求解。仿真数据表明,所提算法较其他算法能够满足更多用户的时延要求,并能减少9%~10%的任务执行时延。 相似文献
8.
9.
《Digital Communications & Networks》2019,5(1):10-17
The rapid growth of mobile internet services has yielded a variety of computation-intensive applications such as virtual/augmented reality. Mobile Edge Computing (MEC), which enables mobile terminals to offload computation tasks to servers located at the edge of the cellular networks, has been considered as an efficient approach to relieve the heavy computational burdens and realize an efficient computation offloading. Driven by the consequent requirement for proper resource allocations for computation offloading via MEC, in this paper, we propose a Deep-Q Network (DQN) based task offloading and resource allocation algorithm for the MEC. Specifically, we consider a MEC system in which every mobile terminal has multiple tasks offloaded to the edge server and design a joint task offloading decision and bandwidth allocation optimization to minimize the overall offloading cost in terms of energy cost, computation cost, and delay cost. Although the proposed optimization problem is a mixed integer nonlinear programming in nature, we exploit an emerging DQN technique to solve it. Extensive numerical results show that our proposed DQN-based approach can achieve the near-optimal performance. 相似文献
10.
Mobile cloud computing is a promising approach to improve the mobile device's efficiency in terms of energy consumption and execution time. In this context, mobile devices can offload the computation‐intensive parts of their applications to powerful cloud servers. However, they should decide what computation‐intensive parts are appropriate for offloading to be beneficial instead of local execution on the mobile device. Moreover, in the real world, different types of clouds/servers with heterogeneous processing speeds are available that should be considered for offloading. Because making offloading decision in multisite context is an NP‐complete, obtaining an optimal solution is time consuming. Hence, we use a near optimal decision algorithm to find the best‐possible partitioning for offloading to multisite clouds/servers. We use a genetic algorithm and adjust it for multisite offloading problem. Also, genetic operators are modified to reduce the ineffective solutions and hence obtain the best‐possible solutions in a reasonable time. We evaluated the efficiency of the proposed method using graphs of real mobile applications in simulation experiments. The evaluation results demonstrate that our proposal outperforms other counterparts in terms of energy consumption, execution time, and weighted cost model. 相似文献
11.
Higinio Mora;Francisco A. Pujol;Tamai Ramirez-Gordillo;Antonio Jimeno; 《Transactions on Emerging Telecommunications Technologies》2024,35(12):e70020
The Mobile Cloud Computing paradigm has revolutionized the concepts of mobile computing and the Internet of Things (IoT). This paradigm allows outsourcing the workload of mobile devices, or other connected “things,” to be computed in the Cloud. Currently, outsourcing possibilities have been widely developed making available computing platforms at different network layers. In a consequence of that, a virtual increasing of the performance and a homogenization of the computing capabilities of the devices are produced. The research described in this work presents a review of the state of the art about recent works, the main operational concerns, challenges, and open issues of this paradigm in order to update the border of knowledge on this topic. As a result, a critical analysis is conducted, and new research directions are discussed. The findings provide value-added to the scientific community and, therefore it could be helpful for other researches in these topics, especially given the rising popularity of IoT platforms. 相似文献
12.
13.
移动边缘计算(MEC)通过将计算任务卸载到MEC服务器上,在缓解智能移动设备计算负载的同时,可以降低服务时延。然而目前在MEC系统中,关于任务卸载和资源分配仍然存在以下问题:1)边缘节点间缺乏协作;2)计算任务到达与实际环境中动态变化的特征不匹配;3)协作式任务卸载和资源分配动态联合优化问题。为解决上述问题,文章在协作式MEC架构的基础上,提出了一种基于多智能体的深度确定性策略梯度算法(MADDPG)的任务卸载和资源分配算法,最小化系统中所有用户的长期平均成本。仿真结果表明,该算法可以有效降低系统的时延及能耗。 相似文献
14.
15.
16.
17.
18.
An ad hoc mobile cloud had been proposed to offload workload to neighboring mobile devices for resource sharing.The issues that whether to offload or not was addressed,how to select the suitable mobile device to offload,and how to assign workload.Game theoretic approach was used to formulate this problem,and then,a distributed scheme was designed to achieve the optimal solution.The experimental results validate the rightness and effectiveness of proposed scheme. 相似文献
19.
《Digital Communications & Networks》2022,8(6):955-963
As a promising computing paradigm, Mobile Edge Computing (MEC) provides communication and computing capability at the edge of the network to address the concerns of massive computation requirements, constrained battery capacity and limited bandwidth of the Internet of Things (IoT) systems. Most existing works on mobile edge task ignores the delay sensitivities, which may lead to the degraded utility of computation offloading and dissatisfied users. In this paper, we study the delay sensitivity-aware computation offloading by jointly considering both user's tolerance towards delay of task execution and the network status under computation and communication constraints. Specifically, we use a specific multi-user and multi-server MEC system to define the latency sensitivity of task offloading based on the analysis of delay distribution of task categories. Then, we propose a scoring mechanism to evaluate the sensitivity-dependent utility of task execution and devise a Centralized Iterative Redirection Offloading (CIRO) algorithm to collect all information in the MEC system. By starting with an initial offloading strategy, the CIRO algorithm enables IoT devices to cooperate and iteratively redirect task offloading decisions to optimize the offloading strategy until it converges. Extensive simulation results show that our method can significantly improve the utility of computation offloading in MEC systems and has lower time complexity than existing algorithms. 相似文献
20.
Hoang T. Dinh Chonho Lee Dusit Niyato Ping Wang 《Wireless Communications and Mobile Computing》2013,13(18):1587-1611
Together with an explosive growth of the mobile applications and emerging of cloud computing concept, mobile cloud computing (MCC) has been introduced to be a potential technology for mobile services. MCC integrates the cloud computing into the mobile environment and overcomes obstacles related to the performance (e.g., battery life, storage, and bandwidth), environment (e.g., heterogeneity, scalability, and availability), and security (e.g., reliability and privacy) discussed in mobile computing. This paper gives a survey of MCC, which helps general readers have an overview of the MCC including the definition, architecture, and applications. The issues, existing solutions, and approaches are presented. In addition, the future research directions of MCC are discussed. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献