首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spherical β-SiC powders that are a few micrometers in size have been prepared by heating a mixture of phenolic resin powder and fine-grained fumed silica at 1600°C in argon. The overall process is composed of two consecutive steps: (i) the formation of silica-coated spherical carbon powder and (ii) carbothermal reduction. The irregularly shaped resin powder transforms to a spherical-shaped morphology in the first step, and the resulting silica-coated spherical carbon powder is converted to β-SiC in the second step. The key factor in the first step is the utilization of fumed silica that has hydrophobic surface functional groups. Hydrophobic interactions at the point of intimate contact between the resin powder and the silica likely reduce the surface energy of the resin powder, thereby discouraging interparticle coalescence. The resulting β-SiC powder exhibits a radially developed columnar microstructure. Hollow β-SiC spheres also can be prepared by controlling the reaction conditions in the carbothermal reduction step.  相似文献   

2.
α(6 H )- and β(3 C )-SiC powders were sintered with the addition of AlB2 and carbon. α-SiC powder could be densified to ∼98% of the theoretical density over a wide range of temperatures from 1900° to 2150°C and with the additives of 0.67–2.7 mass% of AlB2 and 2.0 mass% of carbon. Sintering of the β-SiC powder required a temperature of >2000°C for densification with these additives. Grains in the α-SiC specimens grew gradually from spherical-shaped to plate-shaped grains at 2000°C; the 6 H polytype transformed mainly to 4 H . On the other hand, grains in the β-SiC largely grew at >2000°C; the 3 C polytype transformed to 4 H , 6 H , and 15 R . The stacking faults introduced in grains were denser in β-SiC than in α-SiC. The rapid grain growth in the β-SiC specimen was attributed to polytype transformation from the unstable 3 C polytype at the sintering temperature.  相似文献   

3.
The microstructures of fine-grained β-SiC materials with α-SiC seeds annealed either with or without uniaxial pressure at 1900°C for 4 h in an argon atmosphere were investigated using analytical electron microscopy and high-resolution electron microscopy (HREM). An applied annealing pressure can greatly retard phase transformation and grain growth. The material annealed with pressure consisted of fine grains with β-SiC as a major phase. In contrast, the microstructure in the material annealed without pressure consisted of elongated grains with half α-SiC. Energy-dispersive X-ray analysis showed no differences in the amount of segregation of aluminum and oxygen atoms at grain boundaries, but did show a significant difference in the segregation of yttrium atoms at grain boundaries along SiC grains for the two materials. The increased segregation of yttrium ions at grain boundaries caused by the applied pressure might be the reason for the retarded phase transformation and grain growth. HREM showed a thin secondary phase of 1 nm at the grain boundary interface for both materials. The development of a composite grain consisting of a mixture of β/α polytypes during annealing was a feature common to both materials. The possible mechanisms for grain growth and phase transformation are discussed.  相似文献   

4.
The side surfaces of a commercial β-SiC whisker were analyzed by calculating the surface energy and observing the microstructure of the whiskers. The results indicated that the side surfaces displayed a type of zigzag structure and were composed of {111}, {110}, and {100} crystal planes.  相似文献   

5.
Monodispersed spherical β-SiC powder was synthesized by heating spherical gel powder derived from the hydrolysis of a mixture of phenyltriethoxysilane and tetraethyl orthosilicate. The solution was prepared in a beaker and hydrolyzed by NH4OH without stirring. The monodispersed spherical gel powder of submicrometer size was obtained when the added amount of NH4OH was greater than 16 moles per mole of silane plus alkoxide, and it became monodispersed spherical β-SiC powder by heat-treating at 1500°C for 4 h in an Ar atmosphere. The SiC content of the powder was 92.6 wt%.  相似文献   

6.
The thermoelastic micromechanical stresses associated with a single large hexagonal α-SiC grain within a fine-grain-size cubic (3C) β-SiC matrix were calculated. The naturally occurring residual stresses which are created during cooling from the processing temperatures and the effects of superimposed applied external stresses are both considered. A significant effect of the shape or geometry of the α-SiC grain is revealed, with the largest residual stresses associated with the naturally occurring tabular or platelet structure. The stresses are compared with the published strength results for these materials, which suggests that the residual stresses assume a significant role in the strength reduction that is observed.  相似文献   

7.
The main formation reaction for whisker that has been synthesized from SiO2 and carbon black (CB) in a hydrogen-gas atmosphere was a solid–gas reaction between SiO and CB. The synthesized whiskers were classified into three types, in terms of the morphology, growth direction, and stacking-fault planes: (i) type A, which has a relatively flat surface and the stacking-fault planes are perpendicular to the growth direction; (ii) type B, which has a rough surface and the stacking-fault planes are inclined at an angle of 35° to the growth direction; and (iii) type C, which has a rough sawtooth surface and the stacking faults exist concurrently in three different {111} planes. The observed angles in the deflected and branched whiskers were 125°, 70°, and 109°. These whiskers were composed of mixtures of type A and type B, type A only, or parallel growth by two pairs of type A and type B whiskers. The whisker deflection was closely related to the difference in the growth speed of each type of whisker.  相似文献   

8.
The pyrolysis of polymethylsilane (PMS) in an argon gas environment with a flow rate of 1 L/min was investigated as a standard pyrolytic process, and the investigation showed SiSi network formation at 573 K. Subsequently, various condensed PMS resins were prepared by adjusting pre-heat-treatment or reflux conditions in the temperature range of 423–723 K. The effect of pre-heat treatment or refluxing on the ceramic yield at 1273 K was quantitatively evaluated. Structural evolution in the PMS resins prepared under various reflux conditions was investigated during pyrolysis up to 1873 K. The X-ray diffraction patterns of the pyrolysis products revealed crystallite growth of β-SiC and silicon at 1273–1473 K. 29Si solid-state nuclear magnetic resonance with the single-pulse method was also conducted on the pyrolysis products at 1273 K.  相似文献   

9.
The deformation behavior of boron- and carbon-doped β-silicon carbide (B,C-SiC) with an average grain size of 260 ± 18 nm containing 1 wt% boron was investigated by compression testing at elevated temperatures. Extensive grain growth during deformation was observed. The stress–strain curves were compensated for grain growth by assuming power-law type of dependence on grain size and strain rate. The stress exponent n was ∼1.3 and the grain size exponent p was ∼2.7 at temperatures ranging from 1593° to 1758°C. The apparent activation energy of deformation Q d was ∼760 kJ/mol, which was lower than the activation energy for lattice diffusion of silicon and carbon in SiC and higher than that for grain-boundary diffusion of carbon in SiC. These results suggest that the deformation mechanism of the fine-grained B,C-SiC is grain-boundary sliding accommodated by the grain-boundary diffusion.  相似文献   

10.
The fracture toughness of a dense, sintered commercial α-silicon carbide was determined for temperatures from 20° to 1400°C using both straight- and chevron-notched test specimens and also controlled-surface-microflaw specimens, all in three-point bending. The flexural strengths were also measured for the same range of temperatures and the trend is compared with that of the toughness. Measurements from this study are discussed and also compared with other results in the literature. Analysis reveals the importance of contrasting sharp crack and blunt crack techniques and also the need for addressing the microhardness indentation method separately. It is concluded that the fracture toughness of this silicon carbide is about 3 MPa · m½ and that the crack growth resistance is characterized by a flat R -curve behavior, both of which are independent of temperature from 20° to 1400°C.  相似文献   

11.
12.
Six different preceramic polymers were pyrolyzed via conventional and microwave hybrid heating; these polymers provide a range of carbon content and local atomic coordination. The products were compared with each other using X-ray diffractometry and transmission electron microscopy. Nanocrystalline β-SiC was the principal crystal phase detected, and the amount and size of the nanocrystals increased as the processing temperature increased. Differences were observed in the amount and size of the β-SiC nanocrystals and the graphitization of residual carbon between the microwave hybrid heating and the conventional oven heating of polycarbosilanes. Conventional heating of a high-carbon polysiloxane in an oven (in flowing argon) produced a greater amount of β-SiC from carbothermal reduction at high temperature. Microwave hybrid heating led to better β-SiC nanocrystal development for polyureasilazane.  相似文献   

13.
Cross-linked polysilanes were prepared by the co-polymerization of Me2SiCl2 or PhMeSiCl2 with varying amounts of divinylbenzene (2–15% by weight) using molten sodium as the dehalogenating agent. All the cross-linked polysilanes were stable to air and could be processed thermally for conversion to silicon carbide. Polymers containing from 5–15% of the cross-linking agent underwent a uniform shrinkage during thermal treatment (1500 °C) to afford β-SiC in good yields. The ceramic was characterized by a variety of techniques including Raman and infrared spectroscopy, powder XRD, as well as Scanning Electron Microscopy (SEM). Dedicated to Prof. C. W. Allen in recognition of his outstanding contributions to inorganic polymers. Deceased in a tragic car accident in July 2004.  相似文献   

14.
Increased interest in ceramic materials, particularly for high-temperature, high-stress applications, has created the need for rapid and reliable analytical techniques to monitor microcrystalline structure of commercial ceramic powders. A comparative evaluation of commercially available β-SiC powders is undertaken to analyze the potential of nuclear magnetic resonance (NMR) in the characterization of β-SiC powder. NMR provides an acceptable, rapid method for characterization of powders both during powder manufacturing as well as for powder analyses priror to sintering studies. The results of transmission electron microscopy and X-ray diffraction are correlated with the NMR spectra to explain some newly observed features in the NMR spectra of β-SiC powders and to illustrate the sensitivity of NMR to microcrystalline disorder.  相似文献   

15.
The effect of additions of B, Al, and B + Al on the pressureless sintering of β-Sic was examined. The influence of the sintering atmosphere and heating schedule on densification behavior, polytype transformation, and microstructure development was also studied. High densities were obtained at 1940°C by the simultaneous addition of B and Al. The decrease in the sintering temperature is attributed to the presence of a liquid phase which results in the formation of platelets (up to 200 # in size) of an α-polytype, predominantly 4H and 6H. Polytype transformation and exaggerated grain growth could be prevented by annealing the compact at 1650° to 18500°C for 0.5 to 1 h. This procedure results in a better redistribution of the sintering aids, giving a fine-grained microstructure, constituted primarily of the cubic 3C polytype.  相似文献   

16.
Solid-sample magic angle spinning (MAS) nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS), in conjunction with scanning electron microscopy (SEM), were used to investigate the fate of boron used as a sintering aid for silicon carbide. The results of the NMR studies indicated that the boron penetrated the silicon carbide grain boundaries during sintering, and was incorporated in a tetrahedral form in the bulk, regardless of the gas used during the process. The NMR spectrum of a sample sintered under nitrogen indicated the formation of a trigonal form of boron as well. XPS identified this trigonal boron as boron nitride; however, no boron was detected by XPS in any form on the fracture surface of the silicon carbide sintered under argon, even though the NMR results confirmed the presence of tetrahedral boron in the bulk sample. The SEM results indicated that the fracture process for these materials was predominantly intergranular. This suggested that the boron in the silicon carbide sintered under argon penetrated the grains and left the grain boundaries depleted of boron.  相似文献   

17.
Sintered α-silicon carbide and siliconized silicon carbide were exposed to combustion off-gas containing sodium silicate vapors and particulates in a combustion test facility for 24 to 373 h at 900° to 1050°C. Degradation was evaluated by measuring dimensional changes, by measuring loss in strength due to changes in flaw population, and by evaluating surface corrosion morphology. It is suggested that passive oxidation and dissolution of the silica oxidation scale play an important role in the corrosion process. These mechanisms were enhanced by the continuous removal and replenishment of corrosive material by the high-velocity gas. These degradation phenomena caused surface pitting and an approximately 50% reduction in strength for both materials after long-term exposure (>100 h). Morphological evaluation suggested that the grain boundaries in the α-silicon carbide were oxidized more rapidly than the grains, while for the case of the siliconized silicon carbide the silicon phase was oxidized rapidly along with preferential oxidation of the silicon carbide grains parallel to the {0001} plains.  相似文献   

18.
Sintered α-SiC was exposed for 10 h to H2 containing various partial pressures of H2O ( P H2O from 5×10−6 to 2×10−2 atm; 1 atm≅105 Pa) at 1300° and 1400°C. Weight loss, surface morphology, and room-temperature flexural strength were strongly dependent on P H2O. The strength of the SiC was not significantly affected by exposure to dry H2 at a P H2O of 5×10−6 atm; and following exposure at P H2O >5×10−3 atm, the strength was even higher than that of the as-received material. The increase in strength is thought to be the result of crack blunting associated with SiO2 formation at crack tips. However, after exposure in an intermediate range of water vapor pressures (1×10−5< P H2O <1×10−3 atm), significant decreases in strength were observed. At a P H2O of about 1×10−4 atm, the flexural strength decreased approximately 30% and 50% after exposure at 1300° and 1400°C, respectively. The decrease in strength is attributed to surface defects caused by corrosion in the form of grain-boundary attack and the formation of pits. The rates of weight loss and microstructural changes on the exposed surfaces correlated well with the observed strength changes.  相似文献   

19.
The effects of oxygen partial pressure ( P o2) on the oxidation behavior and room-temperature flexural strength of sintered α-SiC were investigated. Groups of flexure bars were exposed at 1400°C to flowing Ar containing various levels of oxygen ( P o2 ranging from 7.5 × 10−7 to 1.5 × 10−4 MPa). The changes in weight, flexural strength, and surface morphology of the samples were strongly influenced by the P o2 level. When the P o2 was higher than 3 × 10−5 MPa, SiO2 was formed on the surface (i.e., passive oxidation occurred) and the strengths of the samples were not significantly affected. However, when the P o2 was lower than 2 × 10−5 MPa, material loss occurred (active oxidation), decreasing the weight and strength of the samples. Both the reduction in strength and the weight loss resulting from active oxidation were proportional to the P o2. An approximately 50% reduction in strength was observed in the SiC after oxidation for 20 h at a P o2 of 1.5 × 10−5 MPa, a level that is slightly lower than the P o2 at which the transition from active to passive oxidation occurs. Large pits formed during exposure were responsible for the reduction in strength.  相似文献   

20.
Preceramic polymers can be dissolved in solvents to form low-viscosity fluids. This makes them suitable for solid freeforming by direct inkjet printing. Two ways of using polycarbosilane (pcs) were investigated. In the first, it was dissolved in n -heptane at up to 30 vol% and printed as a single-phase material. In the second, it was used as an organic binder for silicon carbide powder suspended in an homologous series of hydrocarbon solvents ranging from n -heptane to n -decane. Polyisobutene succinimide was used as a surfactant. In both cases, components could be rendered successfully but pyrolysis of the unfilled pcs resulted in cracking. Components printed with powder suspensions did not crack on pyrolysis, retained overall near net shape, and underwent low shrinkage (8.2 vol%). The molecular weight of the n -paraffin solvents influenced the viscosity and hence the maximum powder loading while the volatility, a property also related to molecular weight, influenced the quiescence time and the drying time needed between layers. Octane gave the best compromise between speed of printing, the quality and knitting of droplet relics, and the avoidance of nozzle blockage caused by too rapid drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号