首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aqueous solutions of methyldiethanolamine (MDEA) and piperazine (PZ) are commonly used solvent nowadays. In this work a thermodynamic analysis with the Electrolyte-NRTL model has been performed for systems composed of acidic gases and MDEA + PZ aqueous solution. ASPEN Plus® has been used for thermodynamic modeling. Values of binary interaction parameters for liquid phase activity coefficients have been estimated from regressions of experimental data. Moreover, the influence of the interactions between ion pairs and MDEA or PZ molecular species has been analyzed. The final aim is to obtain a reliable tool for design and simulation of absorption and stripping columns, fundamentals also in order to carry out energy saving studies.
  相似文献   

2.
This study described a template-free method for the synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts. The promoting effect of Mn doping and the hierarchically macro-mesoporous architecture on TiO2 based catalysts was also investigated for the selective reduction of NO with NH3. The results show that the catalytic performance of TiO2 based catalysts was improved greatly after Mn doping. Meanwhile, the Mn-TiO2 catalyst with the hierarchically macro-mesoporous architecture has a better catalytic activity than that without such an architecture.
  相似文献   

3.
In-line hydro-treatment of bio-oil vapor from fast pyrolysis of lignocellulosic biomass (hydro-pyrolysis of biomass) is studied as a method of upgrading the liquefied bio-oil for a possible precursor to green fuels. The nobel metal (Pt) and non-noble metal catalysts (Mo2C and WC) were compared at 500 °C and atmospheric pressure which are same as the reaction conditions for fast pyrolysis of biomass. Results indicated that under the pyrolysis conditions, the major components, such as acids and carbonyls, of the fast pyrolysis bio-oil can be completely and partially hydrogenated to form hydrocarbons, an ideal fossil fuel blend, in the hydro-treated bio-oil. The carbide catalysts perform equally well as the Pt catalyst regarding to the aliphatic and aromatic hydrocarbon formation (ca. 60%), showing the feasibility of using the cheap non-noble catalysts for hydro-pyrolysis of biomass.
  相似文献   

4.
The synthesis of new Schiff base-like ligands with asymmetric substituents pattern and their iron complexes with pyridine as axial ligand is described. Two of the ligands and one of the iron(II) complexes were characterized by single crystal X-ray structure analysis. One of the the iron(II) complexes shows spin crossover behavior while the others remain in the high spin state. The influence of the reduced symmetry of the ligand on the properties of the complexes is discussed.
  相似文献   

5.
Pyrazole carboxamide derivatives represent an important class of fungicides in agrochemicals. To find more novel structural pyrazole carboxamides, a novel series of 3-(trifluoromethyl)-1H-pyrazole-4-carboxamide compounds were prepared from ethyl 4,4,4-trifluoroacetoacetate and triethyl orthoformate as starting materials. All the products were characterized by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), 13C NMR, 19F NMR and mass spectrography. The bioassay results showed these fluorine-containing pyrazole carboxamides have a weak fungicidal activity but some of them exhibit a good nematocidal activity against M. incognita.
  相似文献   

6.
Self-standing porous WP2 nanosheet arrays on carbon fiber cloth (WP2 NSs/CC) were synthesized and used as a 3D flexible hydrogen evolution electrode. Because of its 3D porous nanoarray structure, the WP2 NSs/CC exhibits a remarkable catalytic activity and a high stability. By using the experimental measurements and first-principle calculations, the underlying reasons for the excellent catalytic activity were further explored. Our work makes the present WP2 NSs as a promising electrocatalyst for hydrogen evolution and provides a way to design and fabricate efficient hydrogen evolution electrodes through 3D porous nano-arrays architecture.
  相似文献   

7.
Foamable high melt strength polypropylene (HMSPP) was prepared by grafting styrene (St) onto polypropylene (PP) and simultaneously introducing polydimethylsiloxane (PDMS) through a one-step melt extrusion process. The effect of PDMS viscosity on the foaming behavior of HMSPP was systematically investigated using supercritical CO2 as the foaming agent. The results show that the addition of PDMS has little effect on the grafting reaction of St and HMSPP exhibits enhanced elastic response and obvious strain hardening effect. Though the CO2 solubility of HMSPP with PDMS (PDMS-HMSPP) is lower than that of HMSPP without PDMS, especially for PDMS with low viscosity, the PDMS-HMSPP foams exhibit narrow cell size distribution and high cell density. The fracture morphology of PDMS-HMSPP shows that PDMS with low viscosity disperses more easily and uniformly in HMSPP matrix, leading to form small domains during the extrusion process. These small domains act as bubble nucleation sites and thus may be responsible for the improved foaming performance of HMSPP.
  相似文献   

8.
This paper overviews the development of the anthraquinone auto-oxidation (AO) process for the production of hydrogen peroxide in China and abroad. The characteristics and differences between the fixed-bed and fluidized-bed reactors for the AO process are presented. The detailed comparison indicates that the production of hydrogen peroxide with the fluidized-bed reactor has many advantages, such as lower operation cost and catalyst consumption, less anthraquinone degradation, higher catalyst utilization efficiency, and higher hydrogenation efficiency. The key characters of the production technology of hydrogen peroxide based on the fluidized-bed reactor developed by the Research Institute of Petroleum Processing, Sinopec are also disclosed. It is apparent that substituting the fluidized-bed reactor for the fixed-bed reactor is a major direction of breakthrough for the production technology of hydrogen peroxide in China.
  相似文献   

9.
The effect of thermal pretreatment on the active sites and catalytic performances of PtSn/SiO2 catalyst in acetic acid (AcOH) hydrogenation was investigated in this article. The catalysts were characterized by N2 physical adsorption, X-ray diffraction, transmission electron microscopy, pyridine Fourier-transform infrared spectra, and H2-O2 titration on its physicochemical properties. The results showed that Pt species were formed primarily in crystalline structure and no PtSn x alloy was observed. Meanwhile, with the increment of thermal pretreatment temperature, Pt dispersion showed a decreasing trend due to the aggregation of Pt particles. Simultaneously, the amount of Lewis acid sites was remarkably influenced by such thermal pretreatment owning to the consequent physicochemical property variation of Sn species. Interestingly, the catalytic activity showed the similar variation trend with that of Lewis acid sites, confirming the important roles of Lewis acid sites in AcOH hydrogenation. Moreover, a balancing effect between exposed Pt and Lewis acid sites was obtained, resulting in the superior catalytic performance in AcOH hydrogenation.
  相似文献   

10.
A series of Mn-promoted 15 wt-% Ni/Al2O3 catalysts were prepared by an incipient wetness impregnation method. The effect of the Mn content on the activity of the Ni/Al2O3 catalysts for CO2 methanation and the comethanation of CO and CO2 in a fixed-bed reactor was investigated. The catalysts were characterized by N2 physisorption, hydrogen temperature-programmed reduction and desorption, carbon dioxide temperature-programmed desorption, X-ray diffraction and highresolution transmission electron microscopy. The presence of Mn increased the number of CO2 adsorption sites and inhibited Ni particle agglomeration due to improved Ni dispersion and weakened interactions between the nickel species and the support. The Mn-promoted 15 wt-% Ni/Al2O3 catalysts had improved CO2 methanation activity especially at low temperatures (250 to 400 °C). The Mn content was varied from 0.86% to 2.54% and the best CO2 conversion was achieved with the 1.71Mn-Ni/Al2O3 catalyst. The co-methanation tests on the 1.71Mn-Ni/Al2O3 catalyst indicated that adding Mn markedly enhanced the CO2 methanation activity especially at low temperatures but it had little influence on the CO methanation performance. CO2 methanation was more sensitive to the reaction temperature and the space velocity than the CO methanation in the co-methanation process.
  相似文献   

11.
A palladium catalyst supported on 2-aminopyridine functionalized cellulose was synthesized and fully characterized by inductively coupled plasma atomic emission spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectrometry. This catalyst can be applied in the Suzuki cross-coupling reaction of aryl halides with arylboronic acids in 50% ethanol to afford biaryls in good yields, and easily recycled by simple filtration after reaction without the loss of metal Pd.
  相似文献   

12.
Great interests have arisen over the last decade in the development of hierarchically porous materials. The hierarchical structure enables materials to have maximum structural functions owing to enhanced accessibility and mass transport properties, leading to improved performances in various applications. Hierarchical porous materials are in high demand for applications in catalysis, adsorption, separation, energy and biochemistry. In the present review, recent advances in synthesis routes to hierarchically porous materials are reviewed together with their catalytic contributions.
  相似文献   

13.
The growing use of energy by most of world population and the consequent increasing demand for energy are making unexploited low quality gas reserves interesting from an industrial point of view. To meet the required specifications for a natural gas grid, some compounds need to be removed from the sour stream. Because of the high content of undesired compounds (i.e., CO2) in the stream to be treated, traditional purification processes may be too energy intensive and the overall system may result unprofitable, therefore new technologies are under study. In this work, a new process for the purification of natural gas based on a low temperature distillation has been studied, focusing on the dynamics of the system. The robustness of the process has been studied by dynamic simulation of an industrial-scale plant, with particular regard to the performances when operating conditions are changed. The results show that the process can obtain the methane product with a high purity and avoid the solidification of carbon dioxide.
  相似文献   

14.
A review of recent research related to microporous polymeric membranes formed via thermally induced phase separation (TIPS) and the morphologies of these membranes is presented. A summary of polymers and suitable diluents that can be used to prepare these microporous membranes via TIPS are summarized. The effects of different kinds of polymer materials, diluent types, cooling conditions, extractants and additive agents on the morphology and performance of TIPS membranes are also discussed. Finally new developments in TIPS technology are summarized.
  相似文献   

15.
Three-dimensional TiO2 microspheres doped with N were synthesized by a simple single-step solvothermal method and the sample treated for 15 h (hereafter called TMF) was then used as scattering layers in the photoanodes of dye-sensitized solar cells (DSSCs). The TMF was characterized using scanning electron microscopy, high resolution transmission electron microscopy, Brunauer-Emmett-Teller measurements, X-ray diffraction, and X-ray photoelectron spectroscopy. The TMF had a high surface area of 93.2 m2?g–1 which was beneficial for more dye-loading. Five photoanode films with different internal structures were fabricated by printing different numbers of TMF scattering layers on fluorine-doped tin oxide glass. UV-vis diffuse reflection spectra, incident photon-to-current efficiencies, photocurrent-voltage curves and electrochemical impedance spectroscopy were used to investigate the optical and electrochemical properties of these photoanodes in DSSCs. The presence of nitrogen in the TMF changed the TMF microstructure, which led to a higher open circuit voltage and a longer electron lifetime. In addition, the presence of the nitrogen significantly improved the light utilization and photocurrent. The highest photoelectric conversion efficiency achieved was 8.08%, which is much higher than that derived from typical P25 nanoparticles (6.52%).
  相似文献   

16.
Ni/SiO2-ZrO2 catalysts with Ni loadings of 1 to 13 wt-% were prepared, characterized by elemental analysis, X-ray diffraction, N2 sorption, temperature programmed oxidation, temperature programmed reduction, and tested for their activity and stability in the dry reforming of methane with carbon dioxide at 850 °C, gas hourly space velocity of 6000 and 1800 h–1 and atmospheric pressure. The SiO2-ZrO2 support as obtained through a simple and efficient sol-gel synthesis is highly porous (A BET = 90 m2?g–1, d P = 4.4 nm) with a homogeneously distributed Si-content of 3 wt-%. No loss of Si or formation of monoclinic ZrO2, even after steaming at 850 °C for 160 h, was detectable. The catalyst with 5 wt-% Ni loading in its fully reduced state is stable over 15 h on-stream in the dry reforming reaction. If the catalyst was not fully reduced, a reduction during the early stages of dry reforming is accompanied by the deposition of up to 44 mg?g–1carbon as shown by experiments in a magnetic suspension balance. Rapid coking occurs for increased residence times and times-on-stream starting at 50 h. The Ni loading of 5 wt-% on SiO2-ZrO2 was shown to provide an optimal balance between activity and coking tendency.
  相似文献   

17.
X-ray crystallography is a powerful strategy for 3-D structure determination of macromolecules, such as nucleic acids and protein-nucleic acid complexes. However, the crystallization and phase determination are the major bottle-neck problems in crystallography. Recently we have successfully developed synthesis and strategy of selenium-derivatized nucleic acids (SeNA) for nucleic acid crystallography. SeNA might not only provide the rational strategies to solve the phase determination problem, but also offer a potential strategy to explore crystallization solutions.
  相似文献   

18.
A robust and versatile tool for multigene pathway assembly is a key to the biosynthesis of high-value chemicals. Here we report the rapid construction of biosynthetic pathways in Saccharomyces cerevisiae using a marker recyclable integrative toolbox (pUMRI) developed in our research group, which has features of ready-to-use, convenient marker recycling, arbitrary element replacement, shuttle plasmid, auxotrophic marker independence, GAL regulation, and decentralized assembly. Functional isoprenoid biosynthesis pathways containing 4–11 genes with lengths ranging from ~10 to ~22 kb were assembled using this toolbox within 1–5 rounds of reiterative recombination. In combination with GAL-regulated metabolic engineering, high production of isoprenoids (e.g., 16.3 mg?g–1 dcw carotenoids) was achieved. These results demonstrate the wide range of application and the efficiency of the pUMRI toolbox in multigene pathway construction of S. cerevisiae.
  相似文献   

19.
Leaching selectivity during metal recovery from complex electronic waste using a hydrochemical process is always one of the generic issues. It was recently improved by using ammonia-based leaching process, specifically for electronic waste enriched with copper. This research proposes electrodeposition as the subsequent approach to effectively recover copper from the solutions after selective leaching of the electronic waste and focuses on recognising the electrochemical features of copper recovery. The electrochemical reactions were investigated by considering the effects of copper concentration, scan rate and ammonium salts. The diffusion coefficient, charge transfer coefficient and heterogeneous reaction constant of the electrodeposition process were evaluated in accordance with different solution conditions. The results have shown that electrochemical recovery of copper from ammoniabased solution under the conditions of selective electronic waste treatment is charge transfer controlled and provide bases to correlate the kinetic parameters with further optimisation of the selective recovery of metals from electronic waste.
  相似文献   

20.
Ribozymes are widespread, and catalyze some extremely important reactions in the cell. Mechanistically most fall into one of two classes, using either metal ions or general acid-base catalysis. The nucleolytic ribozymes fall into the latter class, mostly using nucleobases. A sub-set of these use a combination of guanine base plus adenine acid to catalyze the cleavage reaction. New ribozymes are still being discovered at regular intervals and we can speculate on the potential existence of ribozymes that catalyze chemistry beyond phosphoryl transfer reactions, perhaps using small-molecule coenzymes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号