首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
用一步水热法制备B3+掺杂Birnessite-MnO2负极材料,使用XRD,Raman,SEM,TEM,XPS和恒电流充放电等手段表征了材料的结构和电化学性能。结果表明,B3+掺杂前后的MnO2都是由二维纳米片组装而成的花球,B3+离子掺杂使纳米片的厚度减小,从而缩短了锂离子和电子在材料内部的传输路径;掺杂适量的B3+离子,使Birnessite-MnO2的电荷转移电阻显著降低。B3+掺杂比例为9%的电极材料,具有最优的电化学性能。在电流密度为100 mA·g-1和1000 mA·g-1的条件下,首次充电比容量分别为855.1 mAh·g-1和599 mAh·g-1,循环100次后仍然保有805 mAh·g-1和510.3 mAh·g-1的可逆比容量,容量保持率分别为94.1%和85.2%。  相似文献   

2.
过渡金属硒化物具有较高的理论比容量和良好的导电能力, 是钠离子电池潜在的负极材料, 但其在电化学过程中会发生较大体积变化, 循环寿命不佳, 发展受到了限制。为缓解上述问题, 本研究以金属有机框架材料ZIF-67为前驱体, 用单宁酸(Tannic acid, TA)将ZIF-67刻蚀为空心结构, 再通过碳化、硒化制备出以碳为骨架的纳米中空CoSe2材料(H-CoSe2/C), 相较于未经刻蚀处理的CoSe2材料(CoSe2/C), H-CoSe2/C表现出更好的储钠性能, 特别是循环稳定性得到显著提高。50 mA·g-1电流密度下, 经过350次循环, 可逆比容量保持在383.4 mAh·g-1, 容量保持率为83.6%; 在500 mA·g-1电流密度下, 经过350次循环后容量保持率仍能达到72.2%。本研究表明, 中空结构能够提供足够的空间以缓解材料在电化学过程中的体积变化, 进而提高电极材料的循环性能。  相似文献   

3.
通过一种简便的方法制备氧空位缺陷的氢化TiO2包覆核壳结构C/Fe3O4@rGO(H-TiO2/C/Fe3O4@rGO)复合材料,作为锂离子电池(lithium-ion batteris, LIBs)高性能阳极材料。TiO2在Li+脱嵌过程中体积膨胀系数约为4%,可缓解Fe3O4在充放电过程中的体积膨胀,提高阳极材料结构的稳定性。同时,通过氢化处理改善TiO2较低的电导率(约1×10-12 S·m-1)。H-TiO2/C/Fe3O4@rGO在0.3 A·g-1的电流密度下循环200周次后比容量为867 mAh·g-1,在1 A·g-1的电流密度下循环700周次的比容量为505...  相似文献   

4.
近年来,钠离子电池电极材料引起了研究者们极大的兴趣.过渡金属硒化物具有高钠离子存储容量,是一种具有前景的钠离子电池负极材料.然而,该类材料较低的电导率以及钠离子脱嵌过程中巨大的体积膨胀,导致了其较差的钠离子电池倍率性能和循环寿命.本工作采用二维的双金属有机框架材料为模板,设计制造了多孔铁掺杂NiSe2纳米片材料(Fe-NiSe2@C NSs),该结构具有充分暴露的活性位点,增强的电导率,丰富的空隙和短电子传输路径,易于适应钠离子脱嵌带来的体积膨胀应力,并具有快速的电荷转移动力学.作为钠离子电池负极材料时,Fe-NiSe2@C NSs表现出高比容量(5 A g-1电流密度下为302 mA h g-1)和优异的循环稳定性(5 A g-1的电流密度下循环1000圈容量保持率为99%).此外,该材料在与Na3V2(PO4)2O2F正极材料组成的钠离子全电池...  相似文献   

5.
非化学计量微米氧化硅(SiOx)由于其高理论容量和低成本,有望成为锂离子电池石墨负极材料的替代品.然而, SiOx的实际应用仍然受到其较差的固有导电性和循环过程中明显的体积变化的阻碍.在本工作中,为了同时解决这些问题,我们使用可规模化的溶剂热和热还原方法制备了具有TiO1-yNy-C涂层的SiOx基负极材料(SiOx@TiON-C).我们通过系统性研究发现, TiO1-yNy-C涂层可以适应SiOx循环过程中大的体积变化且有效提高其导电性.因此, SiOx@TiON-C负极具有突出的储锂性能.具体而言, SiOx@TiON-C负极可以在500 mA g-1的电流密度下循环500圈后仍保持750.2 mA h g-1的优异可逆容量, 75.1%的初始库仑效率和优异的倍率性能.这项工作为促进下一代锂离子电池微...  相似文献   

6.
金属锂负极是锂电池极具发展潜力的高能二次电池负极材料,但是锂枝晶生长、界面不稳定、循环稳定性差和体积膨胀大等问题限制了锂负极的应用。针对枝晶生长和体积膨胀的问题,本工作通过模板法构筑了一种具有较大比表面积的半限域式层次孔炭(HPC)材料,HPC电极材料的高比表面积可降低局部电流密度,丰富的孔道结构可将锂限制在其内部沉积,从而达到抑制枝晶生长和缓解体积膨胀的目的。Li‖HPC电池在电流密度为1.0 mA·cm-2、沉积电量为1.0 mAh·cm-2条件下可以循环超过250周次,其库仑效率保持在97.6%。采用此负极与磷酸铁锂(LiFePO4)正极匹配制备的Li@HPC‖LiFePO4全电池,在0.5 C下循环100周次后的正极放电比容量为93.6 mAh·g-1,较相同条件下的Li@Cu‖LiFePO4全电池(60.8 mAh·g-1)提升了32.8 mAh·g-1。  相似文献   

7.
FeF3·0.33H2O具有理论容量和电压高的特点,但其导电性差、氧化还原反应过程中体积变化严重导致电化学循环性能不佳,应用受到限制。本研究采用多巴胺自组装包覆纳米立方Fe2O3颗粒,再经过碳化、HCl刻蚀和HF氟化的策略,合成了由N掺杂石墨烯外壳和纳米立方FeF3·0.33H2O内核所构成的蛋黄壳结构复合材料FeF3·0.33H2O@CNBs,粒径约250 nm,碳壳厚度为30~40 nm。FeF3·0.33H2O@CNBs在0.2C (1C=237 mA·g-1)电流密度下充放电初始容量为208 mAh·g-1,循环50圈之后容量仍然有173 mAh·g-1,每圈容量衰减率仅为0.3%;而纯FeF3·0.33H2O初始容量只有112 mAh·g-1...  相似文献   

8.
单质硅是一种有潜力的高容量锂离子电池负极材料.然而,受限于充放电过程中巨大的体积膨胀,其循环性能并不理想.在这个工作中,我们设计了一种独特的三组分复合负极材料(Si/Cr2O3/C),其中Si纳米颗粒被限域在碳包覆的氧化铬多层空心球(MSHSs)中.得益于Cr2O3/C基体的体积变化缓冲能力与优异的结构稳定性,将Si纳米颗粒封装在MSHSs中可以有效地提高其电化学性能.合理的结构设计赋予了Si/Cr2O3/C三组分复合材料高的可逆容量(在100 mA g-1的电流密度下,比容量为1351 mA h g-1)和稳定的循环性能(在500 mA g-1的电流密度下,循环300次后比容量保持在716 mA h g-1).这一工作提出了一种多壳层空心结构设计的新思路,以解决硅基负极材料循环性差的瓶颈.  相似文献   

9.
用电弧蒸发法和固相硫化法制备核壳结构的碳约束NiS2纳米材料(NiS2@C)。用X射线衍射(XRD)、透射电镜(TEM)和Raman等手段对其表征的结果表明,外部碳层有较多的缺陷,厚度为4 nm,NiS2的粒径为28 nm。作为Na-S电池正极材料的电化学性能:在电流密度为100 mA·g-1条件下NiS2@C正极材料4次循环后库伦效率保持在90%以上,循环500次后仍有106.8 mAh·g-1的可逆比容量,具有较高的循环稳定性。电化学阻抗分析结果表明,NiS2@C外部碳层的良好电子导电性和优异的结构稳定性加快了电极反应并维持着界面离子迁移的动力学平衡。  相似文献   

10.
在二氧化硅微球表面包覆一层酚醛树脂并在高温下将其转化为碳壳,然后进行溶剂热反应、多巴胺包覆、高温硫化以及氢氧化钠刻蚀,制备出碗状C@FeS2@NC(氮掺杂碳层)复合材料。这种复合材料具有开放性三维碗状结构,能释放体积变化产生的应力,其较大的比表面积(70.67 m2·g-1)有很多的活性点位。内外双层碳壳提高了这种复合材料的导电性并提供了稳定的机械结构,外层NC具有很好的保护作用。将这种复合材料用作锂离子电池负极,在0.2 A·g-1电流密度下首圈放电比容量和充电比容量分别为954.3 mAh·g-1和847.2 mAh·g-1,对应的首圈库伦效率为88.78%。循环100圈后,其放电比容量稳定在793.8 mAh·g-1。  相似文献   

11.
过渡金属硫化物作为锂电池负极材料具有极高比容量,但其制备的电极普遍存在导电性差、体积变化大等问题,本研究设计了一种新型的自支撑CuS/SnS2镂空片状锂电池负极材料,以导电碳布作为基底,生长包覆CuS/SnS2镂空纳米片,具备特殊的纳米包覆结构及双金属协同效应,使其在保持较高比容量的同时具备良好的循环稳定性,整体电化学性能优异。研究不同Cu/Sn含量对CuS/SnS2负极材料电化学性能的影响,最佳配比的CuS/SnS2负极材料在0.2 A·g?1电流密度下循环50次后比容量为1480 mAh·g?1,库伦效率稳定在99.5%,在2 A·g?1电流密度下循环200次后比容量仍能保持在697 mAh·g?1,库伦效率为99.8%。   相似文献   

12.
由于钠离子半径比锂离子半径大70%,使得钠离子在石墨电极材料中脱嵌较困难,需要对石墨负极材料进行改性。以天然石墨为原料,采用Hummers法制备氧化石墨烯;在此基础上以钛酸丁酯为原料,采用溶胶-凝胶法制备了TiO_2前驱体/氧化石墨烯(TiO_2/GO)复合材料,通过热处理获得锐钛矿型TiO_2/还原氧化石墨烯(TiO_2/RGO)复合材料。电化学测试结果表明:TiO_2含量为15wt%的TiO_2/RGO复合材料在电流密度为20mA·g~(-1)下的首次放电比容量为74.08mAh·g~(-1),随着循环次数的增加,放电比容量逐渐增大,循环50次后达109.10mAh·g~(-1);充放电效率也呈现出逐渐增大的趋势,循环50次后达65.59%。而纯还原氧化石墨烯首次放电比容量为41.43mAh·g~(-1),循环50次后仅为20.47mAh·g~(-1)。  相似文献   

13.
二硫化钼(Mo S2)作为水系锌离子电池的正极材料,受到锌离子(Zn2+)与主体框架之间的强静电相互作用表现出缓慢的反应动力学。并且Mo S2的层间距较窄难以嵌入大尺寸水合Zn2+,导致Mo S2电极呈现出较低的放电比容量。本研究通过一种简单的氨水辅助水热法制备了NH4+扩层的二硫化钼(Mo S2-N)电极,氨水分解产生的氨气在促进硫代乙酰胺水解和提供还原性S2–的同时,还会产生大量NH4+作为插层离子,将Mo S2的层间距由0.62 nm扩展至0.92 nm,进而大大降低了Zn2+嵌入能垒(改性电极的电荷转移电阻Rct低至35?)。当电流密度为0.1 A·g–1时,Mo S2-N电极的初始放电比容量相比未扩层的Mo S2  相似文献   

14.
以5-磺基水杨酸和戊二酸为螯合和氧化试剂,在水热条件下将硫酸钴氧化成纳米级Co3O4。以碳纳米管薄膜为载体将Co3O4颗粒紧密地附着在碳纳米管上使其填充入碳纳米管薄膜的空隙生成Co3O4/碳纳米管复合材料薄膜(Co3O4@CNTs),并研究其储锂性能。电化学测试结果表明,Co3O4@CNTs薄膜具有较高的放电比容量和优异的倍率性能,在0.2C倍率下初始放电比容量高达1712.5 mAh·g-1,100圈循环后放电比容量为1128.9 mAh·g-1的;在1C倍率下100圈循环后放电比容量仍然保持527.8 mAh·g-1。Co3O4@CNTs薄膜优异的性能源于Co3O4与CNTs的协同作用。高分散性的Co3O4增大了活性材料与电解液之间的接触面积,CNTs有助于形成良好的导电网络提高电子电导率,进而提高了Co3O4负极材料的循环性能和倍率性能。  相似文献   

15.
采用原位溶剂热法,以氧化石墨烯(GO)与Co2+、Fe3+为原料制备疏松多孔的纳米CoFe2O4-还原氧化石墨烯(CoFe2O4-rGO)复合材料。采用XRD、Raman、SEM和HRTEM测试表征了纳米CoFe2O4-rGO复合材料的结构与形貌。测试结果表明,纳米CoFe2O4-rGO复合材料具有三维结构。自组装的多孔CoFe2O4纳米球粒径约为200 nm,在rGO上均匀分散,解决了CoFe2O4易团聚的问题。电化学测试结果表明,纳米CoFe2O4-rGO复合材料具有较高的比容量及优异的循环和倍率性能,在100 mA·g-1的电流密度下其比容量为1 262 mAh·g-1,50次循环后比容量仍能保持在642 mAh·g-1;并在2 000 mA·g-1的大电流密度下仍具有221 mAh·g-1的比容量。纳米CoFe2O4-rGO复合材料拥有更优异的电化学性能的原因在于CoFe2O4纳米球在rGO上均匀分布。三维结构增加了Li+储存的活性位点,有效缓解了电极的体积收缩/膨胀效应,提高了纳米CoFe2O4-rGO复合材料的导电性。   相似文献   

16.
以天然矿物纤水镁石为模板、蔗糖为碳源制备多孔碳纳米管, 并以硫脲为氮、硫源, 采用水热法制备氮/硫共掺杂的碳纳米管。结果表明, 掺杂碳纳米管继承了纤水镁石模板的柱状结构, 呈现中空管状, 增大了模板炭的比表面积和孔容。在6 mol·L-1 KOH电解液中, 电流密度为1 A·g-1时, 未掺杂碳纳米管的比电容为62.2 F·g-1, 氮掺杂之后碳纳米管的比电容为97.0 F·g-1, 氮/硫共掺杂的碳纳米管比电容为172.0 F·g-1, 氮/硫共掺杂后碳纳米管的电化学性能比未掺杂的提高近3倍; 循环1000次电容保持率达89%, 说明掺/硫共掺杂碳纳米管具有良好的电化学性能。此外, 组装的对称型超级电容器同样展示了良好的电容性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号