首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This paper describes the design of a 1.9-GHz front-end receiver. The target application of the receiver is the personal communications standard PCS1900. Powered by a 1-V supply, the receiver consists of a low noise amplifier (LNA) and a downconversion mixer. The receiver was fabricated within a 0.5-μm CMOS technology. The LNA features 15 dB of gain and a 1.8-dB noise figure. The mixer exhibits 1.5-dB conversion loss, 12-dB noise figure, and 0 dBm 1 dB-compression point  相似文献   

2.
This letter presents an integrated AlGaN/GaN X-band receiver front-end. This is to the authors knowledge the first published results of an integrated AlGaN/GaN MMIC receiver front-end. The receiver uses an integrated SPDT switch to reduce size, weight and cost compared to circulator based transceiver front-ends. The integrated front-end has more than 13 dB of gain and a noise figure of 3.5 dB at 11 GHz.   相似文献   

3.
The design of RF integrated circuits, at the low voltage allowed by sub-scaled technologies, is particularly challenging in cellular phone applications where the received signal is surrounded by huge interferers, determining an extremely high dynamic range requirement. In-depth investigations of 1/f noise sources and second-order intermodulation distortion mechanisms in direct downconversion mixers have been carried out in the recent past. This paper proposes a fully integrated receiver front-end, including LNA and quadrature mixer, supplied at 750 mV, able to meet GSM specifications. In particular, the direct downconverter employs a feedback loop to minimize second-order common mode intermodulation distortion, generated by a pseudo-differential transconductor, adopted for minimum voltage drop. For maximum dynamic range, the commutating pair is set with an LC filter. Prototypes, realized in a 90-nm RF CMOS process, show the following performances: 51 dBm IIP2, minimum over 25 samples, 1 dB desensitization point due to 3-MHz blocker at -18 dBm, 3.5 dB noise figure (NF), integrated between 1 kHz-100 kHz, 15 kHz 1/f noise corner. The front-end IIP2 has also been characterized with the mixer feedback loop switched off, resulting in an average reduction of 18 dB.  相似文献   

4.
This paper presents an integrable RF sampling receiver front-end architecture, based on a switched-capacitor (SC) RF sampling downconversion (RFSD) filter, for WLAN applications in a 2.4-GHz band. The RFSD filter test chip is fabricated in a 0.18-/spl mu/m CMOS technology and the measurement results show a successful realization of RF sampling, quadrature downconversion, tunable anti-alias filtering, downconversion to baseband, and decimation of the sampling rate. By changing the input sampling rate, the RFSD filter can be tuned to different RF channels. A maximum input sampling rate of 1072 MS/s has been achieved. A single-phase clock is used for the quadrature downconversion and the bandpass operation is realized by a 23-tap FIR filter. The RFSD filter has an IIP/sub 3/ of +5.5 dBm, a gain of -1 dB, and more than 17 dB rejection of alias bands. The measured image rejection is 59 dB and the sampling clock jitter is 0.64 ps. The test chip consumes 47 mW in the analog part and 40 mW in the digital part. It occupies an area of 1 mm/sup 2/.  相似文献   

5.
A direct-conversion receiver for the 3G WCDMA standard   总被引:1,自引:0,他引:1  
A highly integrated direct-conversion receiver that satisfies requirements of the third-generation wide-band code-division multiple-access mobile phone standard is described. The receiver integrated circuit includes the front-end low-noise amplifier, downconversion mixers, baseband variable-gain amplifiers, channel-select filters, and the frequency synthesizer. External components are limited to matching elements required for the low-noise amplifier and the mixers and two passive band-select filters. The receiver is implemented in a SiGe BiCMOS process and consumes a total current of 46 mA from a 2.7-V supply.  相似文献   

6.
The building blocks of a 0.5-V receiver, including a receiver front-end and a low-pass filter (LPF), are fabricated using 0.18- $mu{hbox{m}}$ CMOS technology. At 5.6 GHz, the receiver front-end achieves a voltage gain of 17.1 dB and a noise figure of 8.7 dB, while dissipating at 19.4 mW. The fifth-order low-pass Chebyshev filter achieves a corner frequency of 2.6 MHz and an input-referred noise of 28.5 nV/sqrt (Hz) at 6.8 mW. The receiver front-end is further integrated with the LPFs to form a highly integrated receiver subsystem at ultra-low voltage.   相似文献   

7.
In this paper, a 1.2-V RF front-end realized for the personal communications services (PCS) direct conversion receiver is presented. The RF front-end comprises a low-noise amplifier (LNA), quadrature mixers, and active RC low-pass filters with gain control. Quadrature local oscillator (LO) signals are generated on chip by a double-frequency voltage-controlled oscillator (VCO) and frequency divider. A current-mode interface between the downconversion mixer output and analog baseband input together with a dynamic matching technique simultaneously improves the mixer linearity, allows the reduction of flicker noise due to the mixer switches, and minimizes the noise contribution of the analog baseband. The dynamic matching technique is employed to suppress the flicker noise of the common-mode feedback (CMFB) circuit utilized at the mixer output, which otherwise would dominate the low-frequency noise of the mixer. Various low-voltage circuit techniques are employed to enhance both the mixer second- and third-order linearity, and to lower the flicker noise. The RF front-end is fabricated in a 0.13-/spl mu/m CMOS process utilizing only standard process options. The RF front-end achieves a voltage gain of 50 dB, noise figure of 3.9 dB when integrated from 100 Hz to 135 kHz, IIP3 of -9 dBm, and at least IIP2 of +30dBm without calibration. The 4-GHz VCO meets the PCS 1900 phase noise specifications and has a phase noise of -132dBc/Hz at 3-MHz offset.  相似文献   

8.
A 10-GHz filter/receiver module is implemented in a novel 3-D integration technique suitable for RF and microwave circuits. The receiver designed and fabricated in a commercial 0.18-mum CMOS process is integrated with embedded passive components fabricated on a high-resistivity Si substrate using a recently developed self-aligned wafer-level integration technology. Integration with the filter is achieved through bonding a high-Q evanescent-mode cavity filter onto the silicon wafer using screen printable conductive epoxy. With adjustment of the input matching of the receiver integrated circuit by the embedded passives fabricated on the Si substrate, the return loss, conversion gain, and noise figure of the front-end receiver are improved. At RF frequency of 10.3 GHz and with an IF frequency of 50 MHz, the integrated front-end system achieves a conversion gain of 19 dB, and an overall noise figure of 10 dB. A fully integrated filter/receiver on an Si substrate that operates at microwave frequencies is demonstrated.  相似文献   

9.
An integrated low-noise amplifier and downconversion mixer operating at 1 GHz has been fabricated for the first time in 1 μm CMOS. The overall conversion gain is almost 20 dB, the double-sideband noise figure is 3.2 dB, the IIP3 is +8 dBm, and the circuit takes 9 mA from a 3 V supply. Circuit design methods which exploit the features of CMOS well suited to these functions are in large part responsible for this performance. The front-end is also characterized in several other ways relevant to direct-conversion receivers  相似文献   

10.
A single chip quad-band multi-mode (GSM900/ DCS1800/PCS1900/CDMA2K) direct-conversion RF receiver with integrated baseband ADCs is presented. The fully integrated RF receiver is implemented in a 90-nm single poly, six level metal, standard digital CMOS process with no additional analog and RF components. The highly digital multi-mode receiver uses minimum analog filtering and AGC stages, digitizing useful signal, dynamic DC offsets and blockers at the mixer output. The direct-conversion GSM front-end utilizes resistive loaded LNAs with only two coupled inductors per LNA. The GSM front-end achieves a 31.5 dB gain and a 2.1 dB integrated noise figure with a 5 dB noise figure under blocking conditions. The CDMA2K front-end utilizes a self-biased common-gate input amplifier followed by passive mixers, achieving wideband input matching from 900 MHz up to 2.1 GHz with an IIP3 of +8 dBm. The GSM receiver consumes 38 mA from a power supply of 1.5 V and CDMA2K receiver consumes 16 mA in the low band and 21 mA in the high band. The multi-mode receiver, including LO buffers and frequency dividers, ADCs, and reference buffers, occupies 2.5 mm/sup 2/.  相似文献   

11.
毫米波雷达四元微带双天线阵的研制   总被引:2,自引:0,他引:2  
本文介绍了一种应用于收发分离体制毫米波雷达前端的小型微带阵列双天线.双天线包含两个四元并馈微带天线阵,共置于直径为18.6毫米的圆形衬底上,分别作为雷达前端的接收和发射天线.前端电路采用自行研制的毫米波雷达MMIC套片,利用MCM技术集成在与天线共型的圆形衬底上,与天线以背对背方式连接,采用小孔耦合技术进行场耦合.经过对天线和整个前端的测试,收发天线提供了10.5dB的增益,两天线问的隔离度优于-34dB,雷达前端具备良好的收发性能.  相似文献   

12.
A 2.4-GHz sub-mW CMOS receiver front-end for wireless sensors network   总被引:1,自引:0,他引:1  
A 2.4-GHz fully integrated CMOS receiver front-end using current-reused folded-cascode circuit scheme is presented. A configuration utilizing vertically stacked low-noise amplifier (LNA) and a folded-cascode mixer is proposed to improve both conversion gain and noise figure suitable for sub-mW receiver circuits. The proposed front-end achieves a conversion gain of 31.5dB and a noise figure of 11.8dB at 10MHz with 500-/spl mu/A bias current from a 1.0-V power supply. The conversion gain and noise figure improvements of the proposed front-end over a conventional merged LNA and single-balanced mixer are 11dB and 7.2dB at 10MHz, respectively, with the same power consumption of 500/spl mu/W.  相似文献   

13.
An integrated 2.4 GHz CMOS receiver front-end according to the IEEE 802.15.4 standard is presented in this paper. It integrates the overall RF part, from the balun up to the first stage of the channel filter, as well as the cells for the LO signal conditioning. The proposed architecture is based on a 6 MHz low-IF topology, which uses an inductorless LNA and a new clocking scheme for driving a passive mixer. When integrated in a 90 nm CMOS technology, the receiver front-end exhibits an area of only 0.07 mm2, or 0.23 mm2 when including an input integrated balun. The overall chip consumes 4 mA from a single 1.35 V supply voltage and it achieves a 35 dB conversion gain from input power in dBm to output voltage in dBvpk, a 7.5 dB NF value, -10 dBm of IIP3 and more than 32 dB of image rejection.  相似文献   

14.
An integrated fully differential ultra-wideband CMOS receiver for 3.1-4.8 GHz MB-OFDM systems is presented. A gain controllable low noise amplifier and a merged quadrature mixer are integrated as the RF front-end. Five order Gm-C type low pass filters and VGAs are also integrated for both I and Q IF paths in the receiver. The ESD protected chip is fabricated in a Jazz 0.18 μm RF CMOS process and achieves a maximum total voltage gain of 65 dB, an AGC range of 45 dB with about 6 dB/step, an averaged total noise figure of 6.4 to 8.8 dB over 3 bands and an in-band lIP3 of-5.1 dBm. The receiver occupies 2.3 mm2 and consumes 110 mA from a 1.8 V supply including test buffers and a digital module.  相似文献   

15.
In this work a 2.2 GHz quadrature receiver front-end suitable for low-power applications is presented. The low-noise amplifier, the mixer and the voltage-controlled oscillator are merged into a single stage, making the circuit capable of extreme current reuse while keeping it still functional at low supply voltage. A careful linear time-variant analysis is proven to be necessary to accurately predict the conversion gain and the bandwidth of the downconverter. A prototype, implemented in a 90 nm CMOS technology, validates the theoretical analysis, showing 27 dB of downconversion gain over a 14 MHz base-band bandwidth; the noise figure is 13 dB with a flicker corner frequency of 200 kHz; the input-referred 1 dB compression point is −23.7 dBm. The circuit draws only 1.3 mA from a 1.0 V supply.  相似文献   

16.
For pt. I see ibid., vol. 33, no. 4, April 1998. A 900-MHz direct-conversion receiver to detect a frequency-hopped carrier with frequency shift keying (FSK) modulation at 160 kb/s is integrated on the same chip as the transmitter. The receiver combines a low-noise amplifier with downconversion mixers and low-pass channel-select filters in quadrature channels. A digital correlating detector makes the data decisions. The received signal is dehopped when it is down-converted. The cascade noise figure is 8.6 dB, and the cascade IIP3 is -8.3 dBm. In active mode, the receiver takes 120 mA from 3 V  相似文献   

17.
This paper presents a fully integrated CMOS receiver front-end based on a direct conversion architecture for UMTS/802.11b-g and a low-IF architecture at 100 kHz for DCS1800. The two key building blocks are a multiband low-noise amplifier (LNA) that uses positive feedback to improve its gain and a highly linear mixer. The front-end, integrated in a 0.13 /spl mu/m CMOS process, exhibits a minimum noise figure of 5.2 dB, a programmable gain that can be varied from 13.5 to 28.5 dB, an IIP3 of more than -7.5 dBm and an IIP2 better than 50 dBm. The total current consumption is 20mA from a 1.2V supply.  相似文献   

18.
V频段小型化集成接收前端主要实现对V频段毫米波信号的低驻波、低噪声接收和产品小型化。采用多功能芯片与混合集成技术,实现了毫米波接收信道的小型化集成。引进了微带正交耦合器,构成平衡式分布放大优化射频接收端口输入驻波系数的设计思路,替换了体积笨重的波导宽带隔离器,减小了毫米波接收前端体积和重量。通过对V频段波导微带过渡探针的容错性设计,降低了V频段毫米波接收前端的组装难度,提高了接收前端的一次组装合格率。最终实现批量化V频段小型化集成接收前端射频的输入驻波系数优于1.6,噪声系数优于4.2 dB,外形尺寸(含插座)33.4 mm×30 mm×12 mm。  相似文献   

19.
赵锦鑫  胡雪青  石寅  王磊 《半导体学报》2011,32(10):120-125
This paper presents a fully integrated RF front-end with an automatic gain control(AGC) scheme and a digitally controlled radio frequency varied gain amplifier(RFVGA) for a U/V band China Mobile Multimedia Broadcasting(CMMB) direct conversion receiver.The RFVGA provides a gain range of 50 dB with a 1.6 dB step. The adopted AGC strategy could improve immunity to adjacent channel signal,which is of importance for CMMB application.The front-end,composed of a low noise amplifier(LNA),an RFVGA,a mixer and AGC,achieves an input referred 3rd order intercept point(IIP3) of 4.9 dBm with the LNA in low gain mode and the RFVGA in medium gain mode,and a less than 4 dB double side band noise figure with both the LNA and the RFVGA in high gain mode.The proposed RF front-end is fabricated in a 0.35μm SiGe BiCMOS technology and consumes 25.6 mA from a 3.0 V power supply.  相似文献   

20.
A low-voltage receiver front-end for 5-GHz radio applications is presented. The receiver consists of a low-noise amplifier (LNA) with notch filter, a voltage-controlled oscillator (VCO), and a mixer. The LNA/notch filter has an automatic Q-tuning circuit integrated with it to provide good image rejection. On-chip transformers are used extensively in the receiver to improve performance and facilitate low-voltage operation. The receiver has a gain of 19.8 dB, noise figure of 4.5 dB, a third-order input intercept point (IIP3) of -11.5 dBm, and an image rejection of 59 dB, and the VCO had a phase noise of -116 dBc/Hz at 1-MHz offset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号