首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为了设计仿蜻蜓扑翼飞行器,对现有曲柄摇杆机构进行改进,提出了一种基于单曲柄轴的仿蜻蜓双翅翼空间扑翼机构。采用理论分析和数值仿真相结合的方法,研究了该扑翼机构的运动学特性。采用ADAMS对设计的仿蜻蜓扑翼机构进行仿真分析,结果表明所设计的扑翼机构可有效实现两侧运动完全对称,并且机构运动流畅平稳,机构扑动幅值达到了仿蜻蜓扑翼飞行器设计要求,且满足前后翼扑动角相位相差90°。  相似文献   

2.
为模仿海鸥飞行,设计一种两段式仿生扑翼机构。建立单曲柄双摇杆扑动机构的简化模型,分析满足两侧摇杆偏差角最小时各杆长的经验公式。利用SolidWorks和ADAMS软件建立扑翼飞行器的动力学模型,分析内外翼的运动参数和飞行器整体的位姿变化。结果表明:在相同杆长条件下,曲柄中存在夹角的机构在减少左右摇杆相位差角方面更具优势;两段式仿生扑翼机构可实现翅翼慢频率扑动和展向折弯。仿真结果验证了机构设计的合理性,为扑翼飞行器后续的研究提供参考。  相似文献   

3.
针对平面扑翼机构运动非对称性缺点,提出了一种仿蜻蜓的双翅翼空间曲柄摇杆机构,并进行了运动学分析及运动仿真,由于其本身的运动对称性可增强飞行稳定性,因此可作为仿昆虫等扑翼飞行器的扑翼机构。运用拉格朗日方程建立了动力学模型,由于系统速度周期性波动,会直接影响到驱动的效率和气动特性,为了更加准确地分析机构的动力学特性,利用ADAMS软件进行动力学仿真,在气动载荷和转动惯量作用下,曲柄不能保持匀速转动,运转速度有明显的波动,对飞行器的稳定性和效率产生了不利影响。  相似文献   

4.
为研究扑翼飞行器运动机构扑动原理和翅翼周围流场变化规律,设计鸽形扑翼飞行器扑翼机构并分析翅翼周围流场。运用四杆机构图解法计算出符合扑翼运动要求的曲柄摇杆机构参数,并对相关参数进行优化。基于计算流体力学对扑翼飞行的流场进行数值模拟计算;利用Fluent软件分析得到翅翼周围流场速度云图、湍动能云图以及升力、推力特性曲线。结果表明:鸽形扑翼飞行会引起翅翼流场流动速度发生变化,进而导致空气流动状态由层流变为湍流,湍流动能为扑翼飞行提供气动力。  相似文献   

5.
基于仿生学的微扑翼飞行器是一种模仿鸟类飞行的新概念飞行器,应用前景广泛.通过对鸟类生物学构造和飞行机理的分析,进行机翼和驱动机构的仿生学设计,提出了一种高效节能的驱动机构,并制作了翼展300mm微扑翼飞行器样机.试飞结果表明,该飞行器可进行姿态良好的飞行,可持续飞行10~20s,其结构具有一定的实用价值及应用前景,为微扑翼飞行器的进一步微型化打下基础.  相似文献   

6.
仿鸟微扑翼飞行器姿态控制模型研究   总被引:1,自引:0,他引:1  
设计了仿鸟微扑翼飞行器气动结构布局,采用RBF神经网络辨识获得机翼气动升力和阻力模型,研究了尾翼气动力矩模型,在此基础上建立仿鸟微扑翼飞行器姿态控制模型,并通过仿真研究验证了姿态控制模型的正确性.  相似文献   

7.
为了实现鸟类飞行过程中翅膀的折弯效果,以平面四杆机构为基础,设计一套能实现主动折弯并具有急回特性的扑动-折弯运动模型。采用ADAMS对其进行动力学仿真分析,结果显示该模型具有优良的动力学性能;采用ADAMS与XFlow联合仿真方法对其进行气动特性分析,结果显示该模型具有优良的气动特性;同时,得到翅膀的扑动速度对扑翼的气动特性起着至关重要作用的结论。  相似文献   

8.
以所研制的两自由度扑翼飞行器为研究对象,将飞行器扑动角和扭转角变化曲线拟合后写入用户自定义功能(UDF)程序耦合到Fluent流体求解器中,分析扑翼运动时产生的平均升力系数、推力系数和能量系数,并将分析结果与单自由度扑翼飞行器进行对比。结果表明:两自由度扑翼的平均升力系数比单自由度扑翼提高了1.88倍,平均推力系数提高了1.75倍。同时,两自由度扑翼平均能量系数降低了27.5%,具有更好的举升效率和推进效率,说明所设计的两自由度扑翼飞行器能产生足够飞行的升力,比传统的单自由度扑翼飞行器具有更好的气动性能。  相似文献   

9.
通过观察鸟类飞行时翅膀的运动轨迹,并基于空间连杆机构的理论,设计了一种可实现翅膀两个自由度运动的扑翼机构,通过两个空间连杆机构的相互配合,使翼尖处成功实现了空间"8"字形的运动轨迹,并可以改变扭转角而实现改变攻角的值,为之后仿生扑翼飞行器的设计提供了宝贵的经验。  相似文献   

10.
文章针对海底管线必须定期进行检测这种情况,提出利用扑翼滑翔水下机器人对海底管线进行检测的方案,并对扑翼滑翔水下机器人的总体结构、动力装置和浮力调节装置等进行了结构设计。利用FLUENT软件,对水下机器人在滑翔状态时,仿生扑翼的几种不同俯仰角度和外形尺寸进行了数值分析;结果表明,当仿生扑翼的俯仰角为5°和增大仿生扑翼的展弦比和根梢比时,水下机器人具有较优的大升阻比流体动力性能。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号