首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
利用电化学方法获得316NG不锈钢(316NG)在300℃、pH=5~8硼-锂溶液中的极化曲线和交流阻抗(EIS),并绘制相应水化学条件下的电位-pH图。结果表明:碱性条件下钝化区尤其是二次钝化区极化电流急剧减小,pH=7~8时阳极极化表现出3次钝化现象,偏碱性条件极化阻抗显著高于偏酸性和近中性条件,说明碱性条件下316NG表面钝化膜保护效果更佳。pH=5时电化学极化后样品表面主要生成Cr2O3和Fe2O3;碱性条件下(pH=6~8)样品表面氧化膜为分层结构:最外层为Fe3O4,随深度增加开始出现NiFe2O4,内层成分主要为FeCr2O4。随着电导率升高,溶液电阻、电荷传递电阻和钝化膜电阻均显著降低。依据极化曲线绘制的电位-pH图与文献结果相吻合。   相似文献   

2.
O钝化对铀铌合金电化学腐蚀行为的影响   总被引:2,自引:0,他引:2  
采用电化学方法研究了铀铌合金经CO(0.3MPa)钝化前后的电化学耐蚀性能,并用X射线光电子能谱(XPS)分析了铀铌合金经CO钝化后表面层的组成。研究结果表明:铀铌合金经CO钝化后表面生成了致密的钝化膜,这层钝化膜增大了腐蚀过程的阳极阻力,提高了铀铌合金的电化学耐蚀性能。  相似文献   

3.
CLAM-316L TIG焊接接头显微组织特征分析   总被引:1,自引:0,他引:1  
采用309焊丝对中国低活化马氏体(CLAM)钢和316L不锈钢进行TIG焊,并利用光学显微镜、扫描电镜和维氏硬度仪分析对接接头的微观组织和显微硬度分布。结果表明,CLAM-316L TIG焊接头按照显微组织特征可分为六个区域,即CLAM钢母材、CLAM钢热影响区、CLAM钢熔合区、焊缝金属、316L热影响区、316L母材。CLAM钢熔合区显微组织为淬火马氏体;焊缝金属区为粗大的胞状枝晶组织;316L热影响区和母材均为奥氏体组织,热影响区晶粒尺寸有明显长大。焊态接头整体硬度分布均匀,只有CLAM钢熔合区硬度较高。  相似文献   

4.
通过冲击试验、单向拉伸试验研究了中子辐照对15MnTi钢拉伸、冲击性能影响。中子辐照温度50℃、累计快中子注量1.5066×10~(18)cm~(-2),获得15MnTi钢母材、热影响区辐照前后冲击功及15MnTi钢室温、300℃下辐照前后拉伸曲线。试验结果表明,中子辐照导致15MnTi钢母材、热影响区韧脆转变温度上升,其中母材增幅较热影响区大,但冲击功上平台变化不大;15MnTi钢母材屈服强度、拉伸强度上升,其中室温屈服强度变化大,高温拉伸性能变化不明显。  相似文献   

5.
铝常用作核燃料的包壳材料以及辐照靶件的基体材料。研究其电化学溶解行为对于开发新型铝基体首端溶解工艺具有重要意义。研究了铝在硝酸中的阳极溶解电化学行为,并测定一系列条件下铝阳极的电化学阻抗谱、极化曲线和循环伏安曲线。结果表明:在稳态时,铝表面形成钝化膜,钝化膜的厚度随硝酸浓度的升高先下降后升高,在硝酸浓度为4mol/L时厚度较薄;体系的温度升高、硝酸铝浓度下降都使钝化膜的厚度减小;在有极化电流作用下,升高温度、增大酸度以及增大硝酸铝浓度,都易于使膜击穿,从而实现阳极溶解;铝在硝酸中的溶解速率仅与电流强度有关,电解速率可达0.4g/(A·h)。  相似文献   

6.
采用恒电位阳极极化法研究了17-4PH不锈钢经长期时效后试样分别在(0.5 mol/LH2SO4+1%NaCI)溶液和1%NaCI溶液中的腐蚀行为.结果表明:17-4PH不锈钢经时效处理后点蚀电位负移,钝化膜保护性下降,材料耐蚀性能降低.17.-4PH不锈钢在含有C1-的H2SO4溶液中能发生钝化,并有较宽的钝化区域,而在1%NaCI溶液中不能形成钝化膜,Cl-对试样有严重的点蚀现象.阳极极化曲线显示,17-4PH不锈钢随着时效时间的延长耐蚀性降低,主要是由于时效处理使第二相沿晶界析出、材料组织发生改变所致.  相似文献   

7.
采用循环伏安电沉积法制备出ITO/MnHCF膜电极,通过扫描电镜(SEM)、能谱(EDS)、红外光谱(IR)分析了膜的表面形貌和成分,并结合电沉积的循环伏安曲线,确定了电沉积条件为扫描电位区间-0.2~0.85V,扫描圈数50圈+50圈,扫描速率25mV/s。膜电极在1mol/L NaNO3溶液中具有可逆的电化学行为,在循环伏安条件下能够可逆地置入与置出Na+。初步考察了ITO/MnHCF膜电极对Cs~+的分离性能,研究结果表明,其对Cs~+的分离性能较好,氧化态膜在-0.2V条件下还原吸附Cs~+的去除率达到64.98%,可为MnHCF膜电极应用于核电厂放射性废液的处理提供参考。  相似文献   

8.
《核动力工程》2017,(6):142-146
利用电化学极化曲线和临界点蚀温度测量方法,对比研究316NG和321不锈钢在3.5%的Na Cl溶液中的抗点腐蚀性能。实验结果表明:所有测试温度下(室温、40℃、60℃、80℃)316NG的点蚀击穿电位(Eb)均显著高于321不锈钢;随着温度升高,316NG和321不锈钢的Eb显著下降,抗点蚀性能变差;3.5%Na Cl溶液中316NG和321不锈钢的临界点蚀温度(CPT)分别为20.1℃和3.9℃。从电化学角度看,在模拟海洋环境下,316NG的抗点蚀性能显著优于321不锈钢。扫描电镜下在321不锈钢的点蚀坑中观察到Ti N或Ti C颗粒存在,致使抗点蚀性能降低。  相似文献   

9.
水作为反应堆的主要冷却剂之一,在经过堆芯的辐照区时会产生辐解,生成具有强氧化性的O_2、H_2O_2等产物,这些产物会对材料的腐蚀速率造成影响,进而影响反应堆的活化腐蚀产物源项。在已有理论和模型的基础上,将水辐照分解计算和材料腐蚀速率计算结合起来,以评估水辐照分解对反应堆材料腐蚀速率的影响。根据反应堆的运行工况,计算出冷却回路中水辐解的主要产物O_2和H_2O_2的产额在0.1~10μmol·L~(-1)之间,结合电化学中的混合电位理论,进一步计算得出SS316材料的电化学腐蚀速率在0.012~0.026 g·m~(-2)·h~(-1)范围内。  相似文献   

10.
《核动力工程》2017,(1):72-76
通过慢应变速率拉伸(SSRT)试验和高温电化学相结合的方法,研究外加电位对奥氏体不锈钢316NG焊接接头在含氯离子的高温高压水中应力腐蚀开裂(SCC)倾向的影响。试验结果表明:退火态316NG焊接接头SCC敏感性随外加电极电位升高而增大,且存在一个介于+50~+100 mV[相对标准氢电极(vs.SHE)]之间的SCC临界电位;低于该电位时,SCC敏感性较小,无明显沿晶开裂,仅断口边缘处存在少量穿晶开裂,随电极电位变化不明显;高于该临界电位时,SCC敏感性急剧增加,并出现明显的沿晶开裂。此外,高温Ar和腐蚀性低(电极电位≤50 mV)的环境中,焊接接头的断裂为力学主导的塑形开裂,其与焊接接头的硬度分布密切相关,硬度越低,越容易断裂;强腐蚀性(电极电位50 mV)环境中,焊接接头的断裂为腐蚀主导的脆性开裂;显然,焊缝及热影响区的SCC敏感性高于母材。  相似文献   

11.
The effects of dissolved oxygen on the electrochemical behavior and semiconductor properties of passive film formed on 316L SS in three solutions with different dissolved oxygen were studied by using polarization curve, Mott-Schottky analysis and the point defect model (PDM). The results show that higher dissolved oxygen accelerates both anodic and cathodic process. Based on Mott-Schottky analysis and PDM, the key parameters for passive film, donor density Nd, flat-band potential Efb and diffusivity of defects D0 were calculated. The results display that Nd(1−7 × 1027 m−3) and D0(1−18 × 10−16 cm2/s) increase and Efb value reduces with the dissolved oxygen in solution.  相似文献   

12.
The microstructure of the base metal (BM), heat affected zone (HAZ) and the weld metal (WM) of NPP Kozloduy Unit1 Weld 4 after re-irradiation was investigated by scanning and transmission electron microscopy. Structure of tempered upper bainite (enlarged in the HAZ zone) was found in the BM and HAZ. The WM showed a typical fan-like radial structure with a central zone containing fine equiaxial ferrite grains divided by ferrite bands. The structure changed to fully equiaxial at the periphery towards HAZ. Fine elongated particles (up to 50 nm) were distributed irregularly along the grain boundaries in the WM. Regularly distributed structural inhomogeneities (dots) were observed in the grain volume both in WM (with diameter up to 15 nm) and in BM (with diameter up to 50 nm). An annealing experiment was undertaken in order to prove the character of the dots. The 2 h annealing of the thin foils at 560°C showed that the dots of larger size were precipitations, but the character of the smallest ones could not be determined unambiguously. The impact fracture in vacuum of a 1 mm2 specimen at −120°C developed mainly by transcrystal cleavage and quasi-cleavage.  相似文献   

13.
A system for the in situ monitoring of corrosion depth via electrical resistance measurements was applied to study the corrosion rate of type 316L stainless steel at 553 K in pure water. Corrosion depth was measured using a 50 μm diameter wire probe mounted axially in the tube. Measurements were in good agreement with literature data for both the hydrogen water chemistry (HWC) condition and the normal water chemistry (NWC) condition. Oxide film analyses by scanning electron microscopy and laser Raman spectroscopy on the wire probe and the tube showed no effects from shape of the test specimens or the application of electric current. Corrosion kinetics was evaluated by fitting equations to the measurements. Data for the HWC condition could be fitted by a two-step logarithmic–parabolic law. A single-step logarithmic law fitted data for the NWC condition. Changes in corrosion rate by the water chemistry changes were readily detected with the technique. Corrosion depth change could be observed for the water chemistry change from the NWC condition to the HWC condition with electrochemical corrosion potential (ECP) of ?0.56 V vs. standard hydrogen electrode, which is lower than the ECP that the phase of iron oxide changes from α-Fe2O3 to Fe3O4.  相似文献   

14.
Recent studies on stress corrosion cracking (SCC) behaviors of austenitic stainless steels in hydrogenated high-temperature water show that low potential SCC (LPSCC) can occur on cold-worked SUS 316 stainless steel (hereinafter, 316SS). In this study, oxide films and crack tips on cold-worked 316SS exposed to hydrogenated high-temperature water were characterized using analytical transmission electron microscopy (ATEM), grazing incidence X-ray diffraction (GIXRD) and Auger electron spectroscopy (AES) in order to study the corrosion and SCC behaviors of these films and crack tips. A double layer structure was identified for the oxide film after a constant extension rate tensile (CERT) test. The outer layer was composed of large particles (0.2–3 μm) of Fe3O4 and the inner layer consisted mainly of fine particles (~10 nm) of FeCr2O4. In addition, nickel enrichment was identified at the metal/oxide interface. Particles of Fe3O4 were also identified on the crack walls. These results indicate that the same electrochemical reactions had occurred inside and outside the crack. The crack tip area was filled with corrosion products of a chromium-rich oxide. In addition, nickel enrichment was observed at the crack tip. The formation of the nickel-enriched phase indicates that a selective dissolution reaction of iron and chromium occurred at the front of the LPSCC crack.  相似文献   

15.
核电站不锈钢管道焊接过程中引入的残余应力对焊接接头的应力腐蚀开裂性能有较大影响。本文针对一AP1000主管道316LN不锈钢焊接模拟件进行残余应力分析和应力腐蚀裂纹扩展速率测量,得到了焊后原始状态和去应力热处理状态的焊接热影响区材料在高温高压水中的应力腐蚀裂纹扩展速率。实验结果表明,焊接残余应力明显提高了热影响区的应力腐蚀裂纹扩展速率,且在含氢的压水堆一回路正常水化学下焊接残余应力的影响更加显著。  相似文献   

16.
The Hitachi ferrite coating film process (Hi-F) has been developed to lower recontamination after chemical decontamination. In this process, the chemical decontamination process is carried out, and a fine Fe3O4 coating film is formed on the surface of stainless steel piping in an aqueous solution. In order to improve the suppression of 60Co deposition further, we combined the original Hi-F with a preoxidation step. We found the deposited amount of 60Co with preoxidized Hi-F coating film (OHi-FC) was 1/10 of that for non-coated specimens. In this study, we investigated the suppression mechanism of 60Co for the OHi-FC. The composition of OHi-FC was changed from Fe3O4 to Fe2O3 and then the crystals in the OHi-FC grew three times larger than those of the original Hi-F coating film. Consequently the corrosion amount of the stainless steel base metal was reduced by getting larger grains in the coating film. Because 60Co was incorporated into the corrosion oxide, the suppression effect of 60Co deposition by preoxidation was attributed to the suppression of the formation of the corrosion oxide by the OHi-FC.  相似文献   

17.
The corrosion assessment and surface layer properties after O5+ ion irradiation of commercially pure titanium (CP-Ti) has been studied in 11.5 N HNO3. CP-Ti specimen was irradiated at different fluences of 1 × 1013, 1 × 1014 and 1 × 1015 ions/cm2 below 313 K, using 116 MeV O5+ ions source. The corrosion resistance and surface layer were evaluated by using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and glancing-angle X-ray diffraction (GXRD) methods. The potentiodynamic anodic polarization results of CP-Ti revealed that increased in ion fluence (1 × 1013-1 × 1015 ions/cm2) resulted in increased passive current density due to higher anodic dissolution. SEM micrographs and GXRD analysis corroborated these results showing irradiation damage after corrosion test and modified oxide layer by O5+ ion irradiation was observed. The EIS studies revealed that the stability and passive film resistance varied depending on the fluence of ion irradiation. The GXRD patterns of O5+ ion irradiated CP-Ti revealed the oxides formed are mostly TiO2, Ti2O3 and TiO. In this paper, the effects of O5+ ion irradiation on material integrity and corrosion behavior of CP-Ti in nitric acid are described.  相似文献   

18.
Single-layer thin film coatings have been deposited on steel substrates and tested for their corrosion resistance. These coatings include TiN, ZrO2, TiO2, Al2O3, and MoS2, and it is proposed that they will act as barriers to provide protection to the steel canisters that are part of the dry cask storage system for high level nuclear waste. Corrosion testing was completed using electrochemical potentiodynamic polarization techniques in aerated 1 M NaCl solution. Results show an exponential increase in corrosion rate with increasing temperature and an exponential decrease in the passive breakdown overpotential, which is directly related to the ability of a material to form and sustain a corrosion-inhibiting passive film in a given environment. Additionally, kinetic activation parameters have been experimentally determined for each material, leading to predictive equations for corrosion rates. The bare and coated samples corrode analogously, indicative of pores allowing the coating and substrate to corrode simultaneously. The samples were also placed in circulating salt brines of varying pH as a supplementary corrosion testing mechanism to explore their corrosivity over extended time. Negligible weight change was experienced by the bare and coated steel samples over a period of 5 months. Increasing the coating thickness and the number of layers may provide higher resistance to uniform and localized corrosion.  相似文献   

19.
在室温纯水、高温纯水及高温硼锂水环境下开展了316LN不锈钢在不同应变幅加载下的腐蚀实验研究,并获得了3种条件下的腐蚀疲劳寿命曲线。结果表明,316LN不锈钢在加载过程中出现了先硬化后软化现象,且随循环周次增加,应力峰值逐渐下降;高温纯水及高温硼锂水环境下材料的腐蚀疲劳性能下降,加速了材料的腐蚀疲劳失效;在高应变幅条件下高温的软化作用占主要影响,低应变幅条件下腐蚀作用占主要影响;试验后的样品断面上均可观察到疲劳辉纹、滑移变形带及二次裂纹,高温水腐蚀环境会加速裂纹扩展,加速疲劳失效。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号