共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, green pea drying is investigated experimentally in a laboratory-scale spouted bed dryer. A mathematical model is also developed to investigate the effect of operating conditions on the performance of the system. The effect of operating parameters such as inlet air temperature, particle size, and flow rate of the drying air on the performance of the dryer are studied experimentally. In order to build the process model, it is necessary to analyze the transport in both solid and gas phases. A complete set of equations with no adjustable parameters is derived for existing zones in the spouted bed dryer in order to predict variations in the temperature and moisture content of the solid and gas phases with time for batch drying conditions. Model results are compared with corresponding experimental data. Agreement between the model results and experimental data is good. 相似文献
2.
he performance of a laboratory scale jet spouted bed (JSB) for drying rice flour slurry was studied. The bed consisted of ceramic balls (5028 mm diameter) and the rice flour slurry was sprayed onto the moving particle surface near the inlet part. All the experiments were carried out at the jet spouting regime. This regime has high bed void fraction and violent movement and collision of bed particles. As a result, the dried product layer is attrited from particle surface as a fine powder and entrained from the bed by the spouting air. The experimental result were presented to show the effects of static bed height, inlet air flow rate and temperature, and feed concentration and flow rate on the outlet air temperature, thernal efficiency, and mean particle size and moisture content of the product. Asimple mathematical model, which is based on the conservation of mass and energy equations, was developed. Predicted results agreed well with those obtained from the experiment. 相似文献
3.
ABSTRACT he performance of a laboratory scale jet spouted bed (JSB) for drying rice flour slurry was studied. The bed consisted of ceramic balls (5028 mm diameter) and the rice flour slurry was sprayed onto the moving particle surface near the inlet part. All the experiments were carried out at the jet spouting regime. This regime has high bed void fraction and violent movement and collision of bed particles. As a result, the dried product layer is attrited from particle surface as a fine powder and entrained from the bed by the spouting air. The experimental result were presented to show the effects of static bed height, inlet air flow rate and temperature, and feed concentration and flow rate on the outlet air temperature, thernal efficiency, and mean particle size and moisture content of the product. Asimple mathematical model, which is based on the conservation of mass and energy equations, was developed. Predicted results agreed well with those obtained from the experiment. 相似文献
4.
《Drying Technology》2013,31(9):1735-1757
Abstract Urease activity, cracking, and breakage are important factors in considering the quality of raw soybean for feed meal industries. A two-dimensional spouted bed dryer was investigated to determine its capability for thermally inactivating the urease enzyme and maintaining its other qualities. The experimental results have shown that the drying kinetics of soybean in a two-dimensional spouted bed dryer are of the form described in the thin layer drying. The expression for the model parameter in Newton's law of cooling equation accounting for the moisture contents and inlet air temperatures was developed. The initial moisture content and inlet air temperature conditions cause cracks in the kernels. The strong collision between kernels and deflector because of high superficial velocity leads to high percentage of broken soybeans in the spout region. However, the velocity of 15.9 m/s can reduce the breakage below 5%. The inactivation of urease at low-to-moderate moisture content is suitably described by the first order kinetics. The modified Monod equation is applied when the moisture content is higher than 26% dry basis due to the inhibitory effect of water content on the inactivation rate. To complete urease inactivation and maintain protein quality, the temperatures of 150°C should be used. 相似文献
5.
The objective of this work was to derive and experimentally verify a hybrid CST/neural network model to determine the moisture content of the powders produced during paste drying in a spouted bed and describe the highly coupled heat and the mass transfer. The model was derived from overall energy and mass balances with effective drying kinetics given by a neural network. Simulations were performed in MatLab and drying experiments for model verification were carried out for different pastes in a conical, semi-pilot-scale spouted bed. 相似文献
6.
Songchai Wiriyaumpaiwong Somchart Soponronnarit Somkiat Prachayawarakorn 《Drying Technology》2003,21(9):1735-1757
Urease activity, cracking, and breakage are important factors in considering the quality of raw soybean for feed meal industries. A two-dimensional spouted bed dryer was investigated to determine its capability for thermally inactivating the urease enzyme and maintaining its other qualities. The experimental results have shown that the drying kinetics of soybean in a two-dimensional spouted bed dryer are of the form described in the thin layer drying. The expression for the model parameter in Newton's law of cooling equation accounting for the moisture contents and inlet air temperatures was developed. The initial moisture content and inlet air temperature conditions cause cracks in the kernels. The strong collision between kernels and deflector because of high superficial velocity leads to high percentage of broken soybeans in the spout region. However, the velocity of 15.9 m/s can reduce the breakage below 5%. The inactivation of urease at low-to-moderate moisture content is suitably described by the first order kinetics. The modified Monod equation is applied when the moisture content is higher than 26% dry basis due to the inhibitory effect of water content on the inactivation rate. To complete urease inactivation and maintain protein quality, the temperatures of 150°C should be used. 相似文献
7.
In this work, a model based on population balance equations applied to perfect mixture domains has been employed to represent the coating of soybeans with fertilizer in a conical–cylindrical spouted bed. The results of the present model provided explicit equations for the coating mean and variance. The coating mass distribution function was validated against experimental data. The effect of operational time on the distributions was analyzed, showing that the coating uniformity can be improved by increasing the operating time. 相似文献
8.
Microwave-assisted spouted bed (MSBD) drying of lettuce cubes was investigated experimentally. Response surface methodology was used to optimize the process with spouting air temperature, microwave power level, and superficial air velocity. The dried product obtained was compared with that obtained using other drying technologies such as hot air drying, air spouted bed drying, vacuum microwave drying, and vacuum freeze drying. The comparison is based on the rehydration ratio, chlorophyll content of the product, color, and the drying time required. 相似文献
9.
Usually immobilization is a requirement for the use of enzymes as an industrial biocatalyst. In this work, endophytic fungus Cercospora kikuchii lipase was immobilized by covalent binding on agricultural by-products and microcrystalline cellulose. The enzyme support system was submitted to spouted bed drying. Lipase immobilized on microcrystalline cellulose with 1.5% of glutaraldehyde showed the best results, presenting 179.1% of the original activity after drying, followed by rice husk (173.9%), corn stover (169.8%), sugarcane bagasse (157.3%), green coconut fiber (102.3%), and corncob (99.8%). The immobilized derivatives obtained showed a decreased enzyme activity with an average of only 17.31%, whereas the enzyme in its free form lost 85.8% of its initial activity after storage for 6 months. The operational stability showed that the biocatalysts prepared retained an average of 67.2% of the initial activity after five reuse cycles. The results showed that the use of agricultural by-products as low-cost support material associated with the spouted bed drying is promising and can contribute to industrial application of biocatalysts. 相似文献
10.
A mathematical model of temperature and wheat moisture content distribution inside a triangular spouted bed dryer was developed. The model is based on analysis of heat and mass transfer inside the dryer. In addition to that, an empirical bulk density model has been developed for wheat and included in the drying simulation. A laboratory-scale triangular spouted bed (TSB) dryer was used to dry wheat grain to validate the model. The dryer was divided into three sections, namely spouting, downcomer, and fountain. A series of drying runs were conducted to record moisture and temperature profile. There were two distinct regions observed during wheat drying. A constant rate period was observed during the initial drying stage and the falling rate period took place at the later drying stage. Initial moisture content and operating drying temperature governed the timing of transition from constant rate period to falling rate period. The model can be used to accurately predict the moisture content of wheat during drying. The temperature prediction inside the TSB dryer was less accurate, especially at high temperatures due to heat losses in the experimental dryer. Further studies are needed to improve the accuracy of this model, especially with regard to the temperature prediction. 相似文献
11.
A mathematical model of temperature and wheat moisture content distribution inside a triangular spouted bed dryer was developed. The model is based on analysis of heat and mass transfer inside the dryer. In addition to that, an empirical bulk density model has been developed for wheat and included in the drying simulation. A laboratory-scale triangular spouted bed (TSB) dryer was used to dry wheat grain to validate the model. The dryer was divided into three sections, namely spouting, downcomer, and fountain. A series of drying runs were conducted to record moisture and temperature profile. There were two distinct regions observed during wheat drying. A constant rate period was observed during the initial drying stage and the falling rate period took place at the later drying stage. Initial moisture content and operating drying temperature governed the timing of transition from constant rate period to falling rate period. The model can be used to accurately predict the moisture content of wheat during drying. The temperature prediction inside the TSB dryer was less accurate, especially at high temperatures due to heat losses in the experimental dryer. Further studies are needed to improve the accuracy of this model, especially with regard to the temperature prediction. 相似文献
12.
T. Szentmarjay 《Drying Technology》1995,13(4):1023-1026
13.
14.
T. Szentmarjay 《Drying Technology》2013,31(4):1023-1026
15.
The drying homogeneity of the microwave–pulsed spouted bed drying (MPSBD) method was studied via preparing tubers granules by MPSBD under different predefined conditions. The effects of three parameters (microwave power, moisture content transition point, and loading) on the homogeneity of prepared tubers granules were studied. Based on response surface analysis results, it was concluded that the optimum conditions for tuber granules prepared by MPSBD method is 1.10 W/g microwave power, 80% moisture content transition point, and 90 g material loading. It was proven that the experimental result from the predicted optimal condition agreed with the model-predicted results, which evidenced the accuracy of the response surface analysis. Furthermore, the brighter color and higher rehydration capacity of samples prepared by MPSBD indicates that MPSBD is a promising method that can be applied in the food dehydration industry. 相似文献
16.
Gas-particle flow behavior in a spouted bed of spherical particles was simulated using the Eulerian-Eulerian two-fluid modeling approach, incorporating a kinetic-frictional constitutive model for dense assemblies of the particulate solid. The interaction between gas and particles was modeled using the Gidaspow drag model and the predicted hydrodynamics is compared with published experimental data. To investigate drying characteristics of particulate solids in axisymmetric spouted beds, a heat and mass transfer model was developed and incorporated into the commercial computational fluid dynamics (CFD) code FLUENT 6.2. The kinetics of drying was described using the classical and diffusional models for surface drying and internal moisture drying, respectively. The overall flow patterns within the spouted bed were predicted well by the model; i.e., a stable spout region, a fountain region, and an annular downcomer region were obtained. Calculated particle velocities and concentrations in the axisymmetric spouted bed were in reasonable agreement with the experimental data of He et al. (Can. J. Chem. Eng. 1994a, 72:229; 1994b, 72:561). Such predictions can provide important information on the flow field, temperature, and species distributions inside the spouted bed for process design and scale-up. 相似文献
17.
ABSTRACT The continuously operated Mechanically Spouted Bed (MSB) dryer of high evaporative capacity can be advantageously used to produce fine powder from paste-like materials, slurries, suspensions and sludges. Due to the thin layer formed on the surface of the spherical inert particles intensive heat and mass transfer occur and the drying process takes place in the constant rate period. Steady state drying conditions can be achieved when the total operational time of partial processes of inert bed drying does not exceed the cycle time of the inert particles. A laboratory scale MSB dryer has been equipped with a computerised measuring, data acquisition and control system. In the knowledge of the hydrodynamic characteristics of the MSB and giving the enthalpy and mass balances over the dryer a calculation method has been developed for control of drying process. 相似文献
18.
The continuously operated Mechanically Spouted Bed (MSB) dryer of high evaporative capacity can be advantageously used to produce fine powder from paste-like materials, slurries, suspensions and sludges. Due to the thin layer formed on the surface of the spherical inert particles intensive heat and mass transfer occur and the drying process takes place in the constant rate period. Steady state drying conditions can be achieved when the total operational time of partial processes of inert bed drying does not exceed the cycle time of the inert particles.
A laboratory scale MSB dryer has been equipped with a computerised measuring, data acquisition and control system. In the knowledge of the hydrodynamic characteristics of the MSB and giving the enthalpy and mass balances over the dryer a calculation method has been developed for control of drying process. 相似文献
A laboratory scale MSB dryer has been equipped with a computerised measuring, data acquisition and control system. In the knowledge of the hydrodynamic characteristics of the MSB and giving the enthalpy and mass balances over the dryer a calculation method has been developed for control of drying process. 相似文献
19.
A draft tube spouted bed dryer with inert particles was used for drying suspensions. The effects of the operating conditions on dryer throughput and product quality were investigated. Experiments were performed in a cylindrical column 215 mm in diameter with a draft tube 70 mm in diameter and 900 mm in length. The bed was made of polyethylene particles, 3.3 mm in diameter with a density of 921 kg/m3. The fungicide Zineb, calcium carbonate, calcium stearate and pure water were used as feeding materials. A drying model using the continuity and momentum equations for turbulent accelerating two‐phase flows and conventional rate equations is proposed and discussed. The work is relevant for estimating dryer performance. 相似文献
20.
Purple-fleshed sweet potatos (PFSP) were loaded into a laboratory-scale, microwave-assisted spouted bed with a coating of sodium alginate (SA) of 0, 0.2%, 0.4%, 0.8% (w/w) for both steam-blanching pretreated and fresh-cut raw samples. The drying curves, rehydration ratio, and maximum penetrating forces were studied for final products; color changes and anthocyanin level were also taken into consideration. It was concluded that coating processing forms barriers to moisture content, which changes the dielectric properties of PFSP cubes and shortens the drying time; however, coating PFSP cubes with SA did not lead to a porous microstructure in the final products. The final hardness was high and rehydration ratio was low. Steam-blanching was helpful for color and anthocyanin-level retention compared with raw samples. In sum, microwave-assisted spouted bed (MWSB) drying of PFSP cubes is not an ideal processing method, even with coating treatment, but blanching is an approach to obtain products with high anthocyanin level and fine purple color. 相似文献