首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从某炼油厂排污口的污泥中筛选、分离得到以汽油为唯一碳源的菌株X,经形态学、生理生化鉴定,确定该菌株为假单胞菌属(Pseudomonas sp.),并考察了温度、pH、摇床转速等对x菌株降解汽油的影响.结果表明,该菌的最佳降解条件:温度为37℃、pH值为7.0、摇床转速为180 r/min,在此条件下,对汽油的降解率为80%左右;一定浓度的Cu2+和表面活性剂SDS对汽油的降解有促进作用,且X菌可重复利用.  相似文献   

2.
《Planning》2014,(1)
以(NH4)2SO4为唯一氮源的培养基中,从活性污泥中分离筛选出8株具有氨氮降解能力的菌株,根据各菌株之间降解率及生长情况的比较,从中筛选出1株对氨氮降解效果较为明显的菌株NX3,经形态学和生理特性初步鉴定其为芽孢杆菌属(Bacillus),分别测定了在不同的氨氮初始浓度、pH值、温度下菌株NX3对培养基中氨氮的降解效果,实验结果表明在初始氨氮质量浓度300mg/L、pH值7.0、温度30℃时,该菌株对氨氮降解效果较好,降解率为45.53%。  相似文献   

3.
为测定实验室提取的5种石油烃降解菌的混合菌悬液对汽油污染土的降解效果,利用气相色谱-质谱联用仪对经过降解菌降解的汽油污染土化合物进行定性分析,以鉴定此混合菌悬液对汽油污染土是否有降解能力;考虑pH值、温度、土壤含水率及降解菌接种量等因素,采用单因素试验和多因素正交试验进行降解率测定,以优化此混合菌悬液对汽油污染土的降解条件。试验结果表明,单因素试验条件下,经过试验前后化合物组分比较发现,实验室提取的5种混合降解菌对汽油污染土有良好的降解能力;由相对峰面积比图发现,温度和降解菌接种量相对于含水率和pH值这两个因素来说,对混合降解菌降解效果的影响更为显著;当pH值在6~8、降解温度在30~35 ℃、含水率在15%~25%、降解菌接种量在1~2.5 mL范围时,混合菌悬液的降解效果相对明显。多因素正交试验条件下,混合菌悬液的最佳降解条件是:温度为32 ℃,pH值为7,降解菌接种量为1 mL,含水率为25%。  相似文献   

4.
《Planning》2017,(2)
为提高注射用神灵杆菌脂多糖收率和质量,对产生菌粘质沙雷氏菌进行发酵条件优化。在原有培养基基础上,以菌体生物量和发酵液OD值为检测指标,通过单因素试验和响应面法相结合科学系统地对神灵杆菌发酵条件进行研究。结果表明:最合适发酵条件为装液量50 mL、接种量4%、温度30℃、时间32 h、pH 7.2、摇床转速180 r/min。  相似文献   

5.
《Planning》2022,(5)
将高效降解氨氮的假丝酵母菌Candida sp.与高效降解亚硝酸盐氮的耐盐红螺菌Rhodospeudomonas capsulate进行原生质体融合,探讨原生质体制备及融合的条件,并对融合子进行了筛选。结果表明,原生质体制备的优化条件如下:耐盐红螺菌,溶菌酶量为1.5 mg/mL,EDTA浓度为0.1 g/L,作用时间为45min;假丝酵母菌,蜗牛酶量为0.5 mg/mL,巯基乙醇的质量分数为0.1%,EDTA浓度为1 g/L,作用时间为30 min。两种原生质体在聚乙二醇(PEG-6000)和Ca2+的诱导下发生融合,在添加制霉菌素和链霉素的选择培养基上进行初筛,以生长稳定性及对氨氮、亚硝酸盐氮的降解效能等为指标进行复筛,获得了具有较好降解效能的融合子R1菌株。该菌株对亚硝酸盐氮的降解效能与耐盐红螺菌相同,达到90%以上;对氨氮的降解效能为63%,较耐盐红螺菌提高54%。  相似文献   

6.
利用糖蜜废水生产微生物絮凝剂及其絮凝条件优化   总被引:7,自引:1,他引:6  
为了提高微生物絮凝剂的产量,增强其絮凝效果和稳定性,降低培养成本,以糖蜜废水替代葡萄糖作为培养基的碳源和能源,对荧光假单胞菌C-2进行发酵培养来制取微生物絮凝剂,并用其处理造纸中段废水,考察了最佳培养条件:结果表明,荧光假单胞菌C-2产生微生物絮凝剂的最佳培养条件为:糖蜜废水的COD为10000mg/L,培养基的初始pH值为8.0,接种量为2.5mL/50mL,培养温度为30℃,摇床转速为160r/min。在最佳培养条件下对废水中COD和浊度的去除率分别可达87.27%和94.95%,说明利用糖蜜废水取代葡萄糖作为培养基的碳源和能源来制备微生物絮凝剂是完全可行的。  相似文献   

7.
为研究异养硝化菌Y7和Y16对低温水的处理效果,构建生物增强活性炭(BEAC)滤柱,其中A滤柱接种Y7菌株,B滤柱接种Y16菌株,C滤柱接种Y7+ Y16混菌,以不接菌活性炭滤柱(D)作为对照.在5℃下研究了工艺对氨氮和CODMn的去除效果、亚硝酸盐氮与硝酸盐氮的积累特征以及进水DO含量和滤速对BEAC工艺运行效果的影响.结果表明,BEAC工艺对氨氮的去除效果优于GAC,其中C滤柱对氨氮的降解能力最强,运行期间并未出现硝酸盐氮与亚硝酸盐氮积累现象,启动期间对氨氮的最大去除率达到26.88%,对CODMn的最大去除率达到85.12%.进水溶解氧浓度对各滤柱去除氨氮和CODMn几乎没有影响;低滤速有利于BEAC对氨氮的降解,但对去除CODMn的影响较小.  相似文献   

8.
《Planning》2013,(1):47-48
采用逐量分批驯化的方法以污水处理厂污泥作为菌源,苯、甲苯、二甲苯为唯一碳源,驯化、分离、筛选能够有效降解苯系物的真菌,命名为B1。采用单因素以及正交实验方法并对真菌降解环境影响因素及降解效率进行了测定和研究。结果表明:真菌B1对苯系物降解的最佳条件为C∶N=5∶1,pH5,温度30℃,菌种接种量为5.5ml(50ml培养基)。采用GC对初始液相浓度0~90mg/L范围内的苯系物降解效果进行测定,未发现苯系物对真菌降解活性产生抑制作用。真菌对苯系物的降解效率为:甲苯>苯>二甲苯,最高降解效率分别达到87.39%,85.21%,81.47%。混合物降解效果略高于单一底物的降解效果。  相似文献   

9.
从活性污泥中分离得到一株高效降解苯酚菌,经形态特征观察和生理生化试验,鉴定该菌株为麦芽糖假丝酵母。该菌株能以苯酚为唯一碳源和能源,最适宜降解工艺条件如下:温度为30℃,初始pH值为7.0,摇床转速为200 r/min。降解试验表明,该菌能在69 h内完全降解1 800 mg/L苯酚。随着苯酚浓度的增加,底物抑制作用增强。菌株的生长动力学过程符合Hal-dane方程,可利用该方程模拟不同初始浓度苯酚的降解过程。  相似文献   

10.
《Planning》2022,(4)
为优化维氏气单胞菌Aeromonas veronii灭活疫苗菌液发酵工艺,通过单因素试验确定温度、培养基初始pH、转速、接种量对菌液活菌数的影响,应用响应面法的Box-Behnken进行优化,对不同发酵条件下发酵菌液制备灭活疫苗的安全性及免疫效力进行了比较。结果表明:当最优发酵条件为温度28℃、培养基初始pH 7.5、摇床转速230 r/min、接种量5%时,维氏气单胞菌CA07株发酵获得最大的活菌数为11.13×10(9 ) CFU/mL,较单因素试验确定的最高活菌数值提高20.59%,与预测值基本相符;优化发酵条件能提升发酵菌液活菌数,从而显著提高制备的灭活疫苗的相对免疫保护率,即使制备的灭活疫苗稀释3倍,免疫鲫鱼Carassius auratus的相对保护率仍可达到70%以上,以维氏气单胞菌LY02株攻毒,相对免疫保护率达40%以上。研究表明,通过响应面法优化维氏气单胞菌灭活疫苗发酵工艺,在显著增加菌液产量的同时可提高疫苗的免疫效力。  相似文献   

11.
抗生素废水高效降解菌的筛选及其作用条件优化   总被引:1,自引:3,他引:1  
为更有效地处理β-内酰胺环类抗生素生产废水,对处理该废水的活性污泥中的高效降解菌进行筛选、分离,并对其最佳作用条件进行了研究.结果表明,分离得到的4株菌对废水中的有机物具有高效降解作用并对β-内酰胺环类抗生素具有相当的耐受能力,在温度为35℃、摇床转速为150 r/min、初始pH值为7.0、水样中的磷含量为40 mg/L的条件下,混合菌对水样中COD的去除率可达95%.  相似文献   

12.
LAS优势降解菌对洗浴废水处理效果的实验研究   总被引:1,自引:0,他引:1  
针对洗浴废水中LAS难以去除及对微生物具有一定毒性的特点,通过对微生物样品的富集培养、纯种分离获得LAS优势降解菌,并对其进行了菌种鉴定;测定结果表明:LAS优势降解菌属革兰氏阴性菌(G-),并呈短杆状;硝酸盐还原阳性菌;甲基红阴性,可以将产生的酸性物质转化为中性;经需氧性实验测定其为好氧菌。在此基础上,通过静态实验确定LAS优势降解菌处理洗浴废水的最佳反应条件及处理效果;研究结果表明:在LAS降解优势菌菌悬液(OD=0.4)接种量为4%、摇床振荡频率150r·min-1、水样pH=7的条件下,洗浴废水水样中LAS、COD和NH3-N去除率分别为77.89%、86.37%和62.75%。  相似文献   

13.
为了为汽油污染土的微生物修复提供优良菌种,以LB培养基为基质,从石油污染土中对汽油降解菌进行了分离鉴定,以降油培养基为基质对分离得到的菌株进行汽油降解率的测定,以培养温度、培养基pH值及培养时间为参数对5种具有优良汽油降解性能的菌株进行单因素试验,基于单因素试验结果进行三因素三水平的正交试验后,以汽油降解率为响应值对试验结果进行响应面分析,筛选出具有优良降解性能的菌株,并确定了菌株降解汽油的最佳条件。结果表明:从石油污染土中分离出了9种具有汽油降解性能的菌株,其中,铜绿假单胞菌、假单胞菌属、苍白杆菌属、博得特氏菌属以及戈登氏菌属具有优良降解性能,这5种菌降解汽油的最优条件为:铜绿假单胞菌、假单胞菌属、苍白杆菌属、博得特氏菌以及戈登氏菌的最佳培养温度均为32℃,培养基pH值均为7.0,培养时间均为20h,降油培养基中的汽油降解率分别为70.12%、76.42%、75.66%、77.50%和73.22%。  相似文献   

14.
采用膜吸收的方法对经除油剂及膜过滤预处理的某页岩炼油厂油页岩干馏污水中的高浓度氨氮去除进行了现场中试实验。在进水pH值13、温度40 ℃、脱氮时间120 min时,氨氮去除效率为98.38%;进水pH值11、温度40 ℃、脱氮时间120 min时,氨氮去除率为93.24%。结果表明:膜吸收法对油页岩干馏污水具有很好的氨氮脱除效果。该方法操作简单,碱投加量较少,氨氮剩余浓度适当并可由后续生化系统去除,工程适用性强。  相似文献   

15.
混合菌利用制酒废水产生微生物絮凝剂的研究   总被引:3,自引:1,他引:2  
从成都某污水处理厂活性污泥中分离、筛选了2株絮凝剂产生茵,初步鉴定为蜡状芽孢杆菌(Bacillus cereus)和膜璞毕赤酵母(Pichia membranifaciens).利用制酒废水替代成本较高的传统培养基对这两株菌的混合菌(HXJ-1)的最佳产絮条件和絮凝剂的最佳絮凝条件进行了研究,得出了HXJ-1的最佳产絮务件:废水COD为12 000 mg/L,C/N值为20:1,相对接种量为10%(体积分数,菌体浓度为1×108个/L),初始pH值为3.6(制酒废水自然pH),摇床转速为120r/min,培养温度为30℃.在此条件下,发酵24 h所产生的絮凝剂XJBF-1)对高岭土悬浊液的絮凝率平均为89.50%.以浓度为l g/L的高岭土悬浊液(93 mL)为试验对象,得出了XJBF-1的最佳絮凝条件,即:絮凝体系的pH值为7;絮凝剂用量为2 mL;以l%的CaCl2为助凝剂,其投量为5mL.  相似文献   

16.
将优势菌技术运用于饱和基质材料中,考察基质材料对水中氨氮的吸附特性以及微生物原位强化饱和基质材料后对氨氮的降解效果。试验结果表明,沸石对氨氮的吸附量高于活性炭。对氨氮含量为110mg/L的模拟富营养化水体进行360h动态吸附后,沸石和活性炭吸附后出水中氨氮平均含量分别为73.3l和89.18mg/L,沸石显示出作为基质材料的优越性。对饱和基质材料进行异养硝化茵强化96h后,沸石柱和活性炭柱出水氨氮平均含量分别降低8.58和17.31mg/L,并且活性炭和沸石表面形成稳定的生物膜。因此,对富营养水体在基质吸附基础上进行微生物降解的方法是可行的。  相似文献   

17.
黄河兰州段泥沙特征对氨氮降解的影响   总被引:1,自引:0,他引:1  
郑泉  韩志勇  赵旭涛  冯欣 《供水技术》2011,5(1):8-10,18
通过室内模拟试验,研究了不同含沙量、不同粒径的黄河泥沙对水中氨氮降解速率与过程的影响。结果表明:在0~10g/L内,随着泥沙含量的增加,氨氮的降解速率变大;含沙量一定,泥沙粒径越小,氨氮的降解速率越快;相同泥沙含量下,原泥沙对氨氮降解的促进作用要优于清洗后的泥沙。  相似文献   

18.
在静态条件下研究了改性沸石对氨氮的吸附特性,考察了不同条件下改性沸石对含氨氮废水的处理能力。结果表明:热改性温度为500℃、pH值为7、改性沸石加入量为30g/L、吸附时间120min条件下,改性沸石对氨氮的去除率可达95%以上。  相似文献   

19.
《Planning》2022,(2)
以廉价原料豆粕粉、玉米粉和糖蜜为营养要素,采用单因素试验优化了梅奇酵母Metschnikowia sp.C14的培养基成分,再通过豆粕粉、玉米粉、糖蜜和初始pH值4因素3水平的正交试验,确定培养基的最佳组合为:70 g/L豆粕粉、40 g/L玉米粉、60 g/L糖蜜、初始pH为6,在此基础上进一步优化梅奇酵母C14菌株的培养条件。结果显示,该菌株的最佳摇瓶发酵条件为:培养温度25℃,转速180 r/min,接种量3%,250 mL三角瓶中培养基的装液量为25 mL,经28 h培养,C14菌密度可达1.26×109cells/mL,比优化前提高了72.91%。  相似文献   

20.
高效降解原油细菌的筛选和处理效果   总被引:1,自引:0,他引:1  
用常规功能菌筛选和诱变方法获得了5株高效降解原油菌,通过试验确定其适宜降解条件;废水初始pH值为5.5-7.0、温度为25-35℃、溶解氧为5.5-7.0mg/L。将此菌接种到三相流化床中,在适宜降解条件下可使废水中的油含量从44.4mg/L降至4.0mg/L,平均去除率为91.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号