首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An s‐adaptive finite element procedure is developed for the transient analysis of 2‐D solid mechanics problems with material non‐linearity due to progressive damage. The resulting adaptive method simultaneously estimates and controls both the spatial error and temporal error within user‐specified tolerances. The spatial error is quantified by the Zienkiewicz–Zhu error estimator and computed via superconvergent patch recovery, while the estimation of temporal error is based on the assumption of a linearly varying third‐order time derivatives of the displacement field in conjunction with direct numerical time integration. The distinguishing characteristic of the s‐adaptive procedure is the use of finite element mesh superposition (s‐refinement) to provide spatial adaptivity. Mesh superposition proves to be particularly advantageous in computationally demanding non‐linear transient problems since it is faster, simpler and more efficient than traditional h‐refinement schemes. Numerical examples are provided to demonstrate the performance characteristics of the s‐adaptive method for quasi‐static and transient problems with material non‐linearity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we consider a non‐linear viscoelastic model with internal variable, thoroughly analyzed by Le Tallecit et al. (Comput. Methods Appl. Mech. Engrg 1993; 109 :233–258). Our aim is to study here the implementation in three dimensions of a generalized version of this model. Computational results will be analyzed to validate our model on toy problems without geometric complexity, for which pseudo‐analytical solutions are known. At the end, we present a three‐dimensional numerical simulation on a mechanical device. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A variational h‐adaptive finite element formulation is proposed. The distinguishing feature of this method is that mesh refinement and coarsening are governed by the same minimization principle characterizing the underlying physical problem. Hence, no error estimates are invoked at any stage of the adaption procedure. As a consequence, linearity of the problem and a corresponding Hilbert‐space functional framework are not required and the proposed formulation can be applied to highly non‐linear phenomena. The basic strategy is to refine (respectively, unrefine) the spatial discretization locally if such refinement (respectively, unrefinement) results in a sufficiently large reduction (respectively, sufficiently small increase) in the energy. This strategy leads to an adaption algorithm having O(N) complexity. Local refinement is effected by edge‐bisection and local unrefinement by the deletion of terminal vertices. Dissipation is accounted for within a time‐discretized variational framework resulting in an incremental potential energy. In addition, the entire hierarchy of successive refinements is stored and the internal state of parent elements is updated so that no mesh‐transfer operator is required upon unrefinement. The versatility and robustness of the resulting variational adaptive finite element formulation is illustrated by means of selected numerical examples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A version of the mortar method is developed for tying arbitrary dissimilar 3D meshes with a focus on issues related to large deformation solid mechanics. Issues regarding momentum conservation, large deformations, computational efficiency and bending are considered. In particular, a mortar method formulation that is invariant to rigid body rotations is introduced. A scheme is presented for the numerical integration of the mortar surface projection integrals applicable to arbitrary 3D curved dissimilar interfaces. Here, integration need only be performed at problem initialization such that coefficients can be stored and used throughout a quasi‐static time stepping process even for large deformation problems. A degree of freedom reduction scheme exploiting the dual space interpolation method such that direct linear solution techniques can be applied without Lagrange multipliers is proposed. This provided a significant reduction in factorization times. Example problems which touch on the aforementioned solid mechanics related issues are presented. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

5.
In this paper we propose the numerical solution of a steady‐state reaction‐diffusion problem by means of application of a non‐local Lyapunov–Schmidt type reduction originally devised for field theory. A numerical algorithm is developed on the basis of the discretization of the differential operator by means of simple finite differences. The eigendecomposition of the resulting matrix is used to implement a discrete version of the reduction process. By the new algorithm the problem is decomposed into two coupled subproblems of different dimensions. A large subproblem is solved by means of a fixed point iteration completely controlled by the features of the original equation, and a second problem, with dimensions that can be made much smaller than the former, which inherits most of the non‐linear difficulties of the original system. The advantage of this approach is that sophisticated linearization strategies can be used to solve this small non‐linear system, at the expense of a partial eigendecomposition of the discretized linear differential operator. The proposed scheme is used for the solution of a simple non‐linear one‐dimensional problem. The applicability of the procedure is tested and experimental convergence estimates are consolidated. Numerical results are used to show the performance of the new algorithm. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The use of group theory in simplifying the study of problems involving symmetry is a well‐established approach in various branches of physics and chemistry, and major applications in these areas date back more than 70 years. Within the engineering disciplines, the search for more systematic and more efficient strategies for exploiting symmetry in the computational problems of solid and structural mechanics has led to the development of group‐theoretic methods over the past 40 years. This paper reviews the advances made in the application of group theory in areas such as bifurcation analysis, vibration analysis and finite element analysis, and summarizes the various implementation procedures currently available. Illustrative examples of typical solution procedures are drawn from recent work of the author. It is shown how the group‐theoretic approach, through the characteristic vector‐space decomposition, enables considerable simplifications and reductions in computational effort to be achieved. In many cases, group‐theoretic considerations also allow valuable insights on the behaviour or properties of a system to be gained, before any actual calculations are carried out. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a new computational strategy for two‐dimensional contact problems is developed with the aid of variable‐node finite elements within the range of infinitesimal deformations. The variable‐node elements, which are among MLS (moving least square)‐based finite elements, enable us to transform node‐to‐surface contact problems into node‐to‐node contact problems. This contact formulation with variable‐node elements leads to an accurate and effective solution procedure, needless to mention that the contact patch test is passed without any additional treatment. Through several numerical examples, we demonstrate its simplicity and the effectiveness of the proposed scheme. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A new approach to process optimal design in non‐isothermal, steady‐state metal forming is presented. In this approach, the optimal design problem is formulated on the basis of the integrated thermo‐mechanical finite element process model so as to cover a wide class of the objective functions and to accept diverse process parameters as design variables, and a derivative‐based approach is adopted as a solution technique. The process model, the formulation for process optimal design, and the schemes for the evaluation of the design sensitivity, and an iterative procedure for design optimization are described in detail. The validity of the schemes for the evaluation of the design sensitivity is examined by performing a series of numerical tests. The capability of the proposed approach is demonstrated through applications to some selected process design problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Using a Representative volume element (RVE) to represent the microstructure of periodic composite materials, this paper develops a non‐linear numerical technique to calculate the macroscopic shakedown domains of composites subjected to cyclic loads. The shakedown analysis is performed using homogenization theory and the displacement‐based finite element method. With the aid of homogenization theory, the classical kinematic shakedown theorem is generalized to incorporate the microstructure of composites. Using an associated flow rule, the plastic dissipation power for an ellipsoid yield criterion is expressed in terms of the kinematically admissible velocity. By means of non‐linear mathematical programming techniques, a finite element formulation of kinematic shakedown analysis is then developed leading to a non‐linear mathematical programming problem subject to only a small number of equality constraints. The objective function corresponds to the plastic dissipation power which is to be minimized and an upper bound to the shakedown load of a composite is then obtained. An effective, direct iterative algorithm is proposed to solve the non‐linear programming problem. The effectiveness and efficiency of the proposed numerical method have been validated by several numerical examples. This can serve as a useful numerical tool for developing engineering design methods involving composite materials. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A finite element formulation governing the geometrically non‐linear thermoelastic behaviour of plates and shells made of functionally graded materials is derived in this paper using the updated Lagrangian approach. Derivation of the formulation is based on rewriting the Green–Lagrange strain as well as the 2nd Piola–Kirchhoff stress as two second‐order functions in terms of a through‐the‐thickness parameter. Material properties are assumed to vary through the thickness according to the commonly used power law distribution of the volume fraction of the constituents. Within a non‐linear finite element analysis framework, the main focus of the paper is the proposal of a formulation to account for non‐linear stress distribution in FG plates and shells, particularly, near the inner and outer surfaces for small and large values of the grading index parameter. The non‐linear heat transfer equation is also solved for thermal distribution through the thickness by the Rayleigh–Ritz method. Advantages of the proposed approach are assessed and comparisons with available solutions are presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The wavelet‐based methods are powerful to analyse the field problems with changes in gradients and singularities due to the excellent multi‐resolution properties of wavelet functions. Wavelet‐based finite elements are often constructed in the wavelet space where field displacements are expressed as a product of wavelet functions and wavelet coefficients. When a complex structural problem is analysed, the interface between different elements and boundary conditions cannot be easily treated as in the case of conventional finite‐element methods (FEMs). A new wavelet‐based FEM in structural mechanics is proposed in the paper by using the spline wavelets, in which the formulation is developed in a similar way of conventional displacement‐based FEM. The spline wavelet functions are used as the element displacement interpolation functions and the shape functions are expressed by wavelets. The detailed formulations of typical spline wavelet elements such as plane beam element, in‐plane triangular element, in‐plane rectangular element, tetrahedral solid element, and hexahedral solid element are derived. The numerical examples have illustrated that the proposed spline wavelet finite‐element formulation achieves a high numerical accuracy and fast convergence rate. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents an enriched meshless method for fracture analysis of cracks in homogeneous, isotropic, non‐linear‐elastic, two‐dimensional solids, subject to mode‐I loading conditions. The method involves an element‐free Galerkin formulation and two new enriched basis functions (Types I and II) to capture the Hutchinson–Rice–Rosengren singularity field in non‐linear fracture mechanics. The Type I enriched basis function can be viewed as a generalized enriched basis function, which degenerates to the linear‐elastic basis function when the material hardening exponent is unity. The Type II enriched basis function entails further improvements of the Type I basis function by adding trigonometric functions. Four numerical examples are presented to illustrate the proposed method. The boundary layer analysis indicates that the crack‐tip field predicted by using the proposed basis functions matches with the theoretical solution very well in the whole region considered, whether for the near‐tip asymptotic field or for the far‐tip elastic field. Numerical analyses of standard fracture specimens by the proposed meshless method also yield accurate estimates of the J‐integral for the applied load intensities and material properties considered. Also, the crack‐mouth opening displacement evaluated by the proposed meshless method is in good agreement with finite element results. Furthermore, the meshless results show excellent agreement with the experimental measurements, indicating that the new basis functions are also capable of capturing elastic–plastic deformations at a stress concentration effectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The theory of boundary eigensolutions for boundary value problems is applied to the development of computational mechanics formulations. The boundary element and finite element methods that result are consistent with the mathematical theory of boundary value problems. Although the approach is quite general, this paper focuses on potential problems. For these problems, both methods employ potential and boundary flux as primary variables. Convergence characteristics of the new flux‐oriented finite element method are also developed. By utilizing suitable boundary weight functions, the formulations are written exclusively in terms of bounded quantities, even for non‐smooth problems involving notches, cracks and mixed boundary conditions. The results of numerical experiments indicate that the algorithms perform in concert with the underlying theory and thus provide an attractive alternative to existing approaches. Beyond this, the approach developed here provides a new perspective from which to view computational mechanics, and can be used to obtain a better understanding of boundary element and finite element methods. Comparisons with closed‐form boundary eigensolutions are also presented in order to provide a means for assessing the numerical methods. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
A p‐version, hierarchical finite element for doubly curved, moderately thick, isotropic shallow shells is derived and geometrically non‐linear free vibrations of panels with rectangular planform are investigated. The geometrical non‐linearity is due to large displacements, and the effects of the rotatory inertia and transverse shear are considered. The time domain equations of motion are obtained by applying the principle of virtual work and the d'Alembert's principle. These equations are mapped to the frequency domain by the harmonic balance method, and are finally solved by a predictor–corrector method. The convergence properties of the element proposed and the influence of several parameters on the dynamic response are studied. These parameters are the shell's thickness, the width‐to‐length ratio, the curvature‐to‐width ratio and the ratio between curvature radii. The first and higher order modes are analysed. Some results are compared with results published or calculated using a commercial finite element package. It is demonstrated that with the proposed element low‐dimensional, accurate models are obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Building upon the equivalence of the basic scheme in the work of Moulinec and Suquet with gradient descent methods, we investigate the effect of using the celebrated Barzilai-Borwein step size selection technique in this context. We provide an overview of recent convergence theory and present efficient implementations in the context of computational micromechanics, with and without globalization. In contrast to polarization schemes and fast gradient methods, no lower bound on the eigenvalues of the material tangent is necessary for the Barzilai-Borwein scheme. We demonstrate the power of the proposed method for linear elastic and inelastic large scale problems with finite and infinite material contrast.  相似文献   

16.
The non‐linear programming problem associated with the discrete lower bound limit analysis problem is treated by means of an algorithm where the need to linearize the yield criteria is avoided. The algorithm is an interior point method and is completely general in the sense that no particular finite element discretization or yield criterion is required. As with interior point methods for linear programming the number of iterations is affected only little by the problem size. Some practical implementation issues are discussed with reference to the special structure of the common lower bound load optimization problem, and finally the efficiency and accuracy of the method is demonstrated by means of examples of plate and slab structures obeying different non‐linear yield criteria. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Cyclic behavior of materials is complex and difficult to model. A combination of hardening rules in classical plasticity is one possibility for modeling this complex material behavior. Neural network (NN) constitutive models have been shown in the past to have the capability of modeling complex material behavior directly from the results of material tests. In this paper, we propose a novel approach for NN‐based modeling of the cyclic behavior of materials. The proposed NN material model uses new internal variables that facilitate the learning of the hysteretic behavior of materials. The same approach can also be used in modeling of the hysteretic behavior of structural systems or structural components under cyclic loadings. The proposed model is shown to be superior to the earlier versions of NN material models. Although the earlier versions of the NN material models were effective in capturing the multi‐axial material behavior, they were only tested under cyclic uni‐axial state of stress. The proposed NN material model is capable of learning the hysteretic behavior of materials under even non‐uniform stress state in multi‐dimensional stress space. The performance of the proposed model is demonstrated through a series of examples using actual experimental data and simulated testing data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The disturbed state concept (DSC) provides a unified approach for constitutive modelling of engineering materials including such factors as elastic, plastic and creep strains, microcracking, damage and softening, and stiffening responses. The interacting mechanisms in the material mixture composed of the relative intact and fully adjusted states provide implicitly for various factors such as microcrack interaction and characteristic dimension. The DSC model can allow for well-posedness, reduction or elimination of spurious mesh dependence and localization. A number of problems are solved to illustrate convergence and uniqueness of the finite element procedures, localization, spurious mesh dependence, and validation with respect to observed behavior of simulated and practical problems. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a material model to reproduce crack propagation in cement‐based material specimens under mixed‐mode loading. Its numerical formulation is based on the cohesive crack model, proposed by Hillerborg, and extended for the mixed‐mode case. This model is inspired by former works by Gálvez et al but implemented for its use in a finite element code at a material level, that is to say, at an integration point level. Among its main features, the model is able to predict the crack orientation and can reproduce the fracture behaviour under mixed‐mode fracture loading. In addition, several experimental results found in the literature are properly reproduced by the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号