首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dispersion of polyethylene and polyropylene in a polypropylene matrix using a co‐rotating twin screw extruder has been investigated. Poymer pairs were selected to study the effect of viscosity ratio, defined as the viscosity of the minor component over that of the matrix, in the range 0.1 to 900. The dispersion quality was defined by determining the number of “gels,”i.e., large undispersed particles, present in thin films and by conventional microscopy techniques. The gel numbers were found to increase steadily with the viscoty ratio. It was also observed that particle size distributions in the high viscosity ratio blends was very broad, with particles as large as a hundred microns coexisting with much finer ones in the sub‐micron range. For a given polymer blend, the re‐processing was found to have and important effect on gel reduction. The effect of rotation speed, flow rate minor phase feeding position was aso investigated and is discussed in the paper.  相似文献   

2.
Bioinspired gradient microstructures provide an attractive template for functional materials with tailored properties. In this study, filaments with gradient microstructures are developed by melt-spinning of immiscible polymer blends. The distribution of the gradient morphology is shown to be controlled by the viscosity ratio of polymers as well as the geometry of the capillary die. Distinct microstructure gradients with long thin fibrils near the surface region and short large droplets near the center region of the filament, as well as the inverse pattern, are formed in systems with different viscosity ratios. The shear flow field in the capillary can elucidate the formation mechanisms of gradient morphologies during processing. The results demonstrate how the features of a gradient microstructure can be tailored by the design of capillary geometry and processing conditions. The viscosity ratio is then introduced as an adjusting tool to control the gradient morphology in a given processing setup. In consequence, this study provides novel design routes for achieving gradient morphologies in immiscible polymers. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48165.  相似文献   

3.
The critical conditions leading to fracture in elongation and different types of flow instabilities were examined in uniaxial elongation and in a capillary rheometer equipped with dies having different entry profiles. Either ductile or brittle fracture may be observed, ductile being related to necking of material. The critical stress approach was used to predict fracture in elongation. All linear polymers studied in this work exhibited ductile fracture in uniaxial elongation, but the transition to brittle fracture is discussed in relation to existing experiments with other materials. In a ductile fracture regime, critical stress and work both increase with an increasing rate of deformation, whereas in a brittle regime the critical values remain constant. The converging flow studies indicated that two types of flow instability that have been previously related to each other, namely, pressure oscillations and voltions distortions, are of different origins. The critical flow rate for pressure oscillations is independent of entry profile, and the origin for this type of instability lies along the wall of the capillary. On the other hand, the critical flow rate for volume distortions increased with a decreasing entry angle, indicating that volume distortions are not a consequence of pressure oscillation, nor are their origin at the capillary wall. Numerical simulations were used to determine the stress profiles within the flow, and it was shown that the onset of volume distortions is directly related to the magnitude of elongational stress and work, and may therefore be considered to be caused by fracture in elongation. In dies with 90° entry profile, volume distortions were observed simultaneously with pressure oscillations, making it difficult to distinguish between the two phenomena.  相似文献   

4.
A hypothesis for formation of bi-continuous phase structures in immiscible polymer blends is proposed. It is based on the observation that a critical volume fraction φcr for the dual continuity of phases may be calculated considering the geometry of the dispersed phase. The knowledge of the form of discrete domains at the volume fractions φ < φcr and the probability that two close neighbor domains will form a strongly fused connection are sufficient to calculate φcr. Furthermore, it can be predicted that φcr should increase with stabilization of the interface. A comparative study showed that an addition of block copolymer may narrow the volume fraction range where bi-continuous phase structures are formed. Both annealing in the molten state and shearing history influence the measured φcr for the formation of bi-continuous phase structure in amorphous immiscible polymer blends.  相似文献   

5.
In this work, a reactive high flow polypropylene, PP800 (η0 = 40 Pa s, 190°C), is extruded with a commercial compound of polypropylene and ethylene‐propylene random copolymer (η0 = 3000 Pa s, 190°C). On one hand, the fluidity of resulting blends is highly increased but, on the other hand, matrix degradation leads to a strong decrease of the impact behavior and tensile strain. Then, the addition of 10 wt% of propylene‐based copolymer (PBC) leads to a very interesting impact enhancement while keeping high fluidity. A study of morphological, thermal, and dynamical thermal mechanical properties reveal the anchoring of semi crystalline propylene segments of PBC droplets at the interface with the PP matrix. On the contrary, the addition of ethylene‐based copolymer (EBC) is not able to restore satisfactory impact properties. POLYM. ENG. SCI., 56:418–426, 2016. © 2016 Society of Plastics Engineers  相似文献   

6.
应用透射电子显微镜和旋转流变仪对部分相容苯乙烯-马来酸酐共聚物/聚甲基丙烯酸甲酯共混体系在220发生相分离所形成的相形态及共粘弹性进行了研究.并应用不同的方法对其相反转进行了表征和预测.结果表明,由电镜确定的相反转区与流变学方法预测的结果基本一致.  相似文献   

7.
The effect of miscibility on elongational viscosity of polymer blends was investigated in homogeneous, miscible, and immiscible states by the blend of 1.5 wt % of ultrahigh‐molecular‐weight (UHMW) polymer. The matrix polymer was either poly(methyl methacrylate) (PMMA), or poly(acrylonitrile‐co‐styrene) (AS) that has a comparable elongational viscosity value. The homogeneous blend consisted of 98.5 wt % of PMMA and 1.5 wt % of UHMW–PMMA. The miscible blend was composed of AS and UHMW–PMMA at the same ratio. The immiscible blend was a combination of AS and UHMW–polystyrene (PS) at the same ratio. The strain‐hardening behavior of the different blends were compared with that of pure PMMA. It was demonstrated that 1.5 wt % of UHMW induces a strong strain‐hardening property in the homogeneous and miscible blends but was hardly changed in the immiscible blend. The optical microscope observation of the immiscible blend suggested that the UHMW domains were stretched, but that the degree of domain deformation was less than a given elongational strain. It was concluded that the strain‐hardening property is strongly affected by the miscibility of UHMW chain and matrix. The strong strain‐hardening property is caused by the deformation of the UHMW polymer. UHMW chains are stretched when they are entangled with surrounding polymers. However, UHMW chains in an immiscible state are not so deformed because of viscosity difference and no entanglements between domain and matrix. A smaller degree of UHMW chain deformation in immiscible state results in weaker strain‐hardening property. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 961–969, 1999  相似文献   

8.
Polyolefin binary and ternary blends were prepared from polypropylene (PP), an ethylene–α‐olefin copolymer (mPE), and high‐density polyethylene (HDPE) on the basis of the viscosity ratio of the dispersed phase to the continuous phase. In PP/mPE/HDPE blends, fibrils were observed when the dispersed‐phase (mPE/HDPE) viscosity was less than that of PP, or when the viscosity of mPE was less than that of PP, although the viscosity of mPE/HDPE was greater than that of PP. The notched impact strength and mechanical properties such as the yield strength, flexural modulus, and hardness of PP/mPE binary blends further increased with the addition of HDPE according to the type of HDPE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4027–4036, 2004  相似文献   

9.
It has been reported that for polymer blends with high viscosity ratio (>1), the size of the dispersed particles decreases with increasing volume fraction of the dispersed phase. In order to explain this effect, an equation was derived for the affine deformation of an imaginary plane of the dispersed phase in stratified two‐phase steady, simple, shear flow. The model predicts that for viscosity ratio >1, the deformation rate increases with volume fraction of the dispersed phase, and the shear stress also increases, leading to an increase of the breakup time. Therefore, the total deformation of the dispersed phase, before breakup, increases with increase of volume fraction, resulting in a decrease of the size of the dispersed phase particles. Accordingly, one can expect that in industrial mixers, the particle size of the blends should decrease as the volume fraction increases, if coalescence is suppressed. Experiments were carried out in a Haake batch mixer, using polyethylene/polyamide‐6 blends compatibilized by adding maleic anhydride grafted polyethylene. Particle size decreased up to 20 wt% polyamide‐6, at 100, 150, and 200 RPM, and increased between 20 and 30 wt%. The decrease of the particle size is mainly due to increased deformation of the dispersed phase. The increase of the particle size above 20 wt% is due to coalescence at high fractions.  相似文献   

10.
A model has been proposed to correlate the elongational viscosity of blends with the free volume theory so that the elongational viscosity of a blend at any composition can be determined from the elongational viscosity and the weight fractions of the individual components. The predictions of the model are compared with experimental data in four cases and found to give reasonable good agreement.  相似文献   

11.
The deformation and breakup of a single polycarbonate (PC) drop in a polyethylene (PE) matrix were studied at high temperatures under simple shear flow using a specially designed transparent Couette device. Two main breakup modes were observed: (a) erosion from the surface of the drop in the form of thin ribbons and streams of droplets and (b) drop elogation and drop breakup along the axis perpendicular to the velocity direction. This is the first time drop breakup mechanism (a), “erosion,” has been visualized in polymer systems. The breakup occurs even when the viscosity ratio (ηr) is greater than 3.5. although it has been reported that breakup is impossible at these high viscosity ratios in Newtonian systems. The breakup of a polymer drop in a polymer matrix cannot be described by Capillary number and viscosity ratio only; it is also controlled by shear rate, temperature, elasticity and other polymer blending parameters. A pseudo first order decay model was used to describe the erosion phenomenon and it fits the experimental data well.  相似文献   

12.
The effect of viscosity ratio and processing conditions on LCP/PP blend morphology was studied. The viscosity ratio (ηLCPPP) was varied from 0.1 to 3.6 by using five different polypropylene grades as the matrix and two LCPs as the dispersed phase (20 wt %). The most spontaneous fiber formation was achieved when the viscosity ratio was between 0.5 and 1. In addition to shear forces, elongational forces are important in achieving a highly fibrillar structure and significant mechanical reinforcement. The lubricating effect induced by the low viscosity of LCP was most pronounced for the blends exhibiting a fibrillar morphology. The morphologies of blends produced by different mixing equipment differed only slightly. The greatest variation in the mixing efficiency was found for blends whose components had totally dissimilar melt viscosities. The slight differences in morphology due to melt blending in dissimilar equipment were decreased after injection molding, whereas the differences in morphology due to dissimilar viscosity ratios were still evident in the injection molded blends. Thus, the viscosity ratio at processing in the actual processing conditions is of great importance. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The effects of miscibility and blend ratio on uniaxial elongational viscosity of polymer blends were studied by preparing miscible and immiscible samples at the same composition by using poly(methyl methacrylate) (PMMA) and poly(acrylonitrile-co-styrene) (AS). Miscible polymer blend samples for the elongational viscosity measurement were prepared by using three steps: solvent blends, cast film, and hot press. A phase diagram of blend samples was made by visual observation of cloudiness. Immiscible blend samples were prepared by maintaining the prepared miscible samples at 200°C, which is higher than cloud points using a LCST (lower critical solution temperature) phase diagram. The phase structure of immiscible blends was observed by an optical microscope. The elongational viscosity of all samples was measured at 145°C, which is lower than the cloud-point temperature at all blend ratios. The elongational viscosity of PMMA and AS was similar to each other. The strain-hardening property of miscible blends in the elongational viscosity was only slightly influenced by the blend ratio, and this was also the case with immiscible blends. The strain-hardening property was only slightly influenced, whether it was miscible or immiscible at each blend ratio. Polydispersity in molecular weight for blend samples was not changed by GPC (gel permeation chromatography) analysis. Almost no change in the polydispersity of the molecular weight for blends and the similarity of elongational viscosity between PMMA and AS resulted in little influence of the blend ratio and miscibility on the strain-hardening property. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 757–766, 1999  相似文献   

14.
Summary On the basis of experimental data for blends of polyethylene with different polymers an empirical equation is proposed to describe the dependence of melt viscosity of blends on component viscosities and composition. The model ensures the continuity of viscosity vs. composition curves throughout the whole composition range, the possibility of obtaining extremum values higher or lower than the viscosities of components, allows the calculation of flow curves of blends from the flow curves of components and their volume fractions.  相似文献   

15.
A novel, continuous process, solid‐state shear pulverization (S3P), efficiently mixes blends with different component viscosities. Melt mixing immiscible polymers or like polymers of different molecular weight often requires long processing times. With a batch, intensive melt mixer, a polyethylene (PE)/polystyrene (PS) blend with a viscosity ratio (low to high) of 0.019 required up to 35 min to undergo phase inversion. Phase inversion is associated with a morphological change in which the majority component, the high‐viscosity material in these blends, transforms from the dispersed to the matrix phase, and may be quantified by a change from low to high mixing torque. In contrast, such blends subjected to short‐residence‐time (~3 min) S3P yielded a morphology with a PS matrix and a PE dispersed phase with phase diameters ≤ 1 μm. Thus, S3P directly produces matrix and dispersed phases like those obtained after phase inversion during a melt‐mixing process. This assertion is supported by the similarity in the near‐plateaus in torque obtained in the melt mixer at short times with the pulverized blend and at long times with the non‐pulverized blend. The utility of S3P to overcome problems associated with melt mixing like polymers of extreme viscosity ratio is also shown.  相似文献   

16.
J.K. Rameshwaram  H.S. Jeon 《Polymer》2005,46(15):5569-5579
We have investigated the structure-property relationships and the effects of a viscosity ratio on the rheological properties of nanocomposite-like polymer blends using oscillatory and steady shear rheometry and optical microscopy. These immiscible blends are consisted of ultrahigh viscous polybutadiene (PB1), high viscous polybutadien (PB2), and low viscous polydimethylsiloxane (PDMS). The PB1/PDMS blends with an ultrahigh viscosity ratio (λ=162,000) exhibit non-Newtonian fluids behavior for Ω≥0.1 while the PDMS/PB2 blends (λ=37) exhibit pseudo-Newtonian fluids behavior for Ω>0.6, where Ω is the weight fraction of PB1 or PB2 in the blends. The viscoelastic properties of the PB1/PDMS blends increase systematically with an increasing the weight fraction of PB1, and then exhibit plateau values above a certain maximum weight fraction (Ωm) of PB1. In addition the viscoelastic properties of the PB1/PDMS blends are not affected by the change of blend morphology or phase inversion, where Ωm is larger than the phase inversion weight fraction (Ωp). In contrast the viscoelastic properties of the PB2/PDMS blends follow a positive-deviation mixing rule and are significantly affected by phase inversion.  相似文献   

17.
The viscosity of immiscible polymer blends has been studied via application of certain aspects of rheology. A symmetric mixture rule was derived, and the deviations from the ‘additivity rule’ have been associated, essentially, with the properties of the interphase, with its influence on the effective volumes of the two polymers constituting the blend and with the deformability of both the interphase and the disperse phase. The rule predicts a positive deviation for a mixture with a disperse-phase viscosity (ηd) greater than that (ηm) of the continuous medium, and a much higher-viscosity interphase, i.e. ηi å ηd ≥ ηm. Negative deviation is to be expected when the interphase has a much lower viscosity than those of the two pure polymers (ηd, ηm å ηi) in the blend. The viscosity and strength of the interphase depend mostly on the specific thermodynamic interactions that led to its creation.  相似文献   

18.
The application of two-phase conductivity theory to diffusion, in particular to diffusion in polymers and polymer blends, is discussed. The permeability is seen as the property which, e.g. Maxwell's equation may describe, not the diffusion coefficient. The “energy of activation” of diffusion may not be a useful concept for such systems. Measurements of permeability of He, A, O2 and paraxylene through blends of polyethylene and poly-propylene are shown to be consistent with Maxwell's results.  相似文献   

19.
Pierre Le Corroller 《Polymer》2011,52(17):3827-3834
Partial wetting in a ternary polymer blend is the thermodynamic state where all three phases meet at a three-phase line of contact. Pickering emulsions, where solid particles situate at the interface of two other phases is a classic example of this state. This paper studies the presence of partial wetting in PE/PP/PS and in PE/PP/PC ternary polymer blends and examines, in particular, the influence of polyethylene viscosity on PS droplet formation at the PE/PP interface. Quantitative analysis of PS droplet growth and coverage at the PE/PP interface during static annealing were obtained by image analysis. A new approach was established to estimate the co-continuous PE/PP coarsening rate and was found to be in agreement with previous studies. In this work it is shown that the polyethylene viscosity can be of significant importance in ternary partial wetting when the interfacial driving force for partial wetting is weak and viscosity directly affects the quantity and size of PS droplets at the interface during annealing. The equilibrium between droplet stability at the interface, as predicted by spreading theory, and the interfacial mobility generated by coarsening determines the PS droplet size and surface coverage at the PE/PP interface.A ternary PE/PP/PC system, which displays a strong partial wetting driving force, was also investigated. The morphology of the blend system studied demonstrated a clear dominance of partial wetting over complete wetting.  相似文献   

20.
More than 25 PP/PS/SEP blends, where PP is isotactic polypropylene, PS is atactic polystyrene, and SEP is poly(styrene‐block‐ethylene‐co‐propylene), were prepared. The main objective of this study was to investigate the influence of PP/PS viscosity ratio, λTM, on the blends' morphology. It was shown that λTM strongly influenced not only the overall morphology of the blends, but also the morphology of SEP, which exhibited as many as five different types of structure when blended with PP and/or PS. SEP was found an efficient compatibilizer of PP/PS blends as it decreased the average particle size in all studied systems. An interesting “by‐product” of this work was the discovery of a brand‐new type of polymer morphology, which was called morel structure. The characteristic feature of the morel structure was PS matrix compartmentalized by SEP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2236–2249, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号