首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用共沉淀法制备了磁性锆铁改性沸石,在研究其对疏浚余水中磷酸盐吸附特性的基础上,采用X射线衍射仪(XRD)表征其结构,探讨吸附磷的特性。结果表明,Langmuir等温吸附模型、准二级动力学模型和颗粒内扩散模型均可以较好地描述磁性锆铁改性沸石对疏浚余水中磷酸盐的吸附特征。当吸附剂投加量为18 mg/L、pH值为7时,疏浚余水中磷酸盐的饱和吸附量为11. 4 mg/g(以磷计);当pH值为5~7时,磁性锆铁改性沸石对磷酸盐的吸附效果较好,偏碱性条件下吸附量明显下降;当水温在10~30℃时,对磷酸盐的吸附效果随温度的升高而增加;磁性锆铁改性沸石吸附水中磷酸盐的过程属于化学吸附。  相似文献   

2.
活性炭吸附水中酚类内分泌干扰物试验研究   总被引:5,自引:0,他引:5  
考察了两种不同表面化学性质粉末活性炭(WP及其改性炭WPN)对松花江原水和砂滤水中六种加标酚类内分泌干扰物的去除情况。试验结果表明,活性炭对六种目标物的吸附能力与其憎水性(logKOW)有关,依次为:4-n—NP〉E1〉DES〉EE2〉E2〉BPA;活性炭吸附降低了水中的TOC与UV254值,同时也去除了水中大部分的内分泌干扰物,WP和WPN两种活性炭对江水和砂滤水中六种目标物的去除率分别为26.82%~85.97%和74.62%~96.64%,其中WPN的吸附效果相对较好。试验结果还表明,活性炭对酚类内分泌干扰物的吸附能力受水中有机物与活性炭物化性质的影响较大,通过一定的改性处理获得孔结构与表面化学性质均有利于去除水中有机污染物的活性炭,并将其用于给水的深度处理,对于提高活性炭的吸附能力、使用寿命及确保出水水质安全都具有重要意义。  相似文献   

3.
薛明霞  王永康 《山西建筑》2006,32(1):192-194
研究了膨润土的改性方法及改性膨润土对水中Cr(Ⅵ)的吸附性能,结果表明,改性膨润土较原土具有更高的离子交换能力和吸附能力,溴化十六烷基三甲铵(CTMAB)改性膨润土综合效果最好,水中残留的CTMAB对处理水未造成二次污染。  相似文献   

4.
以重金属Cu或Cu/Pd为催化剂对阴极进行改性,采用三种不同组合电极形式(以电镀方式改性的无孔钛板为阴极,阳极为炭板;经吸附负载改性的活性炭纤维绑缚在钛网上形成阴极.阳极为相同面积的钛网;以负载改性的多孔钛板为阴极,以相同面积的多孔钛板为阳极),考察了其对硝酸盐氯的去除效果以及反应副产物氨氮的生成情况.试验结果表明,将催化剂吸附负载于电极上对硝酸盐氮的去除效果比电镀负载方式好;负载催化剂的ACF电极系统会有黑色絮体脱落,影响处理水体水质;负载钯/铜的多孔钛板具有较高的安全性,适于饮用水中硝酸盐氮的处理.  相似文献   

5.
水处理活性炭的选择指标问题   总被引:30,自引:2,他引:28  
研究发现,活性炭的比表面积、碘值,亚甲基蓝吸附值等吸附性能指标与活性炭对天然水中有机物的吸附能力之间相关性能不好,在选择去除天然水中有机物的活性炭时不能这些指标。提出了采用活性炭对水中四种典型有机物的吸附容量和吸附速度作为正确选择水处理用活性炭的指标,且在五种水质中得以验证。  相似文献   

6.
以沸石为载体通过壳聚糖改性制备出一种可以同步去除氨氮与硝酸盐氮的颗粒,并进行小试考察了其吸附效能。影响因素试验结果表明,原水浊度为20 NTU,在30℃下壳聚糖改性沸石复合吸附颗粒对水中氨氮与硝酸盐氮的去除效果最好。p H值分别为6~7和4时,该颗粒对氨氮和硝酸盐氮的最佳吸附量分别为0. 23和0. 66 mg/g,去除率分别为91. 87%和43. 47%。  相似文献   

7.
粉末炭去除饮用水中土霉味物质的影响因素研究   总被引:2,自引:0,他引:2  
采用粉末活性炭(PAC)去除饮用水中2-甲基异莰醇(MIB)、2,4,6-三氯茴萫醚(TCA)、2-异丙基-3-甲氧基吡嗪(IPMP)和2-异丁基-3-甲氧基吡嗪(IBMP)等4种常见的土霉味物质,研究了PAC种类、PAC投加量、嗅味物质的初始浓度、余氯、水质等因素对PAC去除土霉味物质的影响。结果表明,PAC吸附对嗅味物质的去除主要发生在前1 h内;煤质PAC对MIB有更高的去除率;在一定的吸附时间和活性炭投加量下,PAC对痕量嗅味物质的去除率与其初始浓度无关;余氯和有机物的存在降低了PAC对嗅味物质的吸附容量,水质对去除嗅味物质也有很大的影响。  相似文献   

8.
本文介绍了去除饮用水中天然有机物(NOM)的膜过滤法,分析了凝聚、活性炭吸附、膜过滤三种方法的使用及发展前景。  相似文献   

9.
颗粒活性炭吸附去除黄浦江原水中有机物的研究   总被引:2,自引:0,他引:2  
采用超滤膜法分析了黄浦江原水和水厂常规工艺处理出水中有机物的分子质量(MW)分布以及颗粒活性炭(GAC)在不同吸附阶段吸附去除不同分子质量有机物的性能.试验结果表明,黄浦江原水及常规工艺出水中的溶解性有机物(DOC)以小分子为主,并主要集中在MW为10~30 ku和MW<1 ku的区间;活性炭吸附出水中的溶解性有机物仍然主要集中在小分子区间;吸附初期的活性炭对有机物的去除能力较强,其中对CODMn的去除率>83%,对UV254的去除率>90%;随着通水倍数的增大则活性炭的吸附能力逐渐下降,当通水倍数达到6 590.9时,对CODMn和UV254的去除率都只有25%左右;活性炭吸附的各个阶段对小分子有机物的去除率均较高,而对大分子有机物的去除率则较低,从吸附初期到吸附后期,对小分子有机物的去除率高出对大分子有机物的去除率,其百分比从10%增大到30%.  相似文献   

10.
一、概述 采用砂滤和活性炭吸附处理城市自来水,对去除水中的色、嗅、味和对人体有害的有机污染物是有效的,但往往在处理后的水中产生亚硝酸盐。亚硝酸盐含量高,对人体有害,对此引起了人们的关注和重视。本文讨论经颗粒活性炭吸附处理后的饮用水中亚硝酸盐的产生;观察操作运行过程中流速、接触时间、反冲洗和液  相似文献   

11.
In view of the merits of bioleaching and surfactant for sludge treatment, the possibility of surfactant with bioleaching pretreatment applied to improve sludge dewaterability was investigated in this work. The results showed that cetyl trimethyl ammonium chloride (CTAC) with bioleaching pretreatment was highly efficient in dewatering sludge. The optimal CTAC dosage and bioleaching pH for this combination were 120 mg/g (dry solids) and 3.55, respectively, under which the water content of filtrated cake was 68.94% and the specific resistance to filtration was 0.12 × 1013 m/kg with a reduction of 94.92%. Although CTAC and bioleaching both had positive effects on sludge dewatering, their combination was more efficient. The significant enhancement of sludge dewaterability was mainly contributed from the breakage and charge neutralization of sludge flocs, and the release of extracellular polymeric substances (EPS). In addition, the positive correlation between supernatant EPS concentration and sludge dewaterability was observed under experimental conditions.  相似文献   

12.
Parette R  Cannon FS 《Water research》2005,39(16):4020-4028
In rapid small-scale column tests, cationic surfactant-tailored activated carbons (ACs) effectively removed perchlorate to below detection levels for up to 30 times longer than virgin AC. By pre-loading bituminous AC with dicocodimethylammonium chloride, tallowtrimethylammonium chloride, cetyltrimethylammonium chloride, or cetylpyridinium chloride, 75 ppb perchlorate was removed for 27,000-35,000 bed volumes before the effluent perchlorate rose above 1 ppb. These tests employed a natural groundwater that also contained 30 mg/L sulfate, 26 mg/L nitrate (as NO3-), and other ions. By the time of 25 ppb perchlorate breakthrough, 7.3-10.1% of quaternary ammonium sites had perchlorate associated with them. Although some of the surfactants leached out of the tailored carbon beds (0.6-21.2% of the amount loaded), the leached surfactant could be removed to below detectable limits with a virgin AC polishing bed that chased the tailored bed.  相似文献   

13.
Sorption of quaternary ammonium compounds to municipal sludge   总被引:2,自引:0,他引:2  
The sorptive behavior of four quaternary ammonium compounds (QACs) - hexadecyl trimethyl ammonium chloride (C16TMA), dodecyl trimethyl ammonium chloride (C12TMA), hexadecyl benzyl dimethyl ammonium chloride (C16BDMA), and dodecyl benzyl dimethyl ammonium chloride (C12BDMA) - to municipal primary, waste activated, mesophilic digested, and thermophilic digested sludges was assessed at 22 °C. Batch adsorption of all four separately tested QACs to primary sludge reached equilibrium within 4 h. At a nominal, initial QAC concentration of 300 mg/L and a sludge volatile solids concentration of 1 g/L, the extent of adsorption was 13, 88, 67, and 89% for the C12TMA, C16TMA, C12BDMA, and C16BDMA, respectively, and correlated positively to the QAC hydrophobicity and negatively to their critical micelle concentration. Equilibrium partitioning data were described by the Freundlich isotherm model. The adsorption capacity of the four sludges was very similar. In binary QAC mixtures, QACs with relatively high adsorption affinity and at relatively high aqueous concentrations decreased the adsorption of QACs with a low adsorption affinity. At pH 7, about 40% of the sludge-C12TMA desorbed, whereas less than 5% of the sludge-C16BDMA desorbed in 10 days. The effect of pH was negligible on the desorption extent of C12TMA at a pH range 4-10 over 10 days, whereas increasing the solution pH to 10 resulted in more than 50% desorption of C16BDMA. Given the fact that approximately 50% of the municipal biosolids are land-applied in the US, the data of this study would help in the assessment of the fate of QACs and their potential effect on human and environmental health.  相似文献   

14.
Awual MR  Jyo A  Ihara T  Seko N  Tamada M  Lim KT 《Water research》2011,45(15):4592-4600
This study was investigated for the trace phosphate removal at high feed flow rate by ligand exchange fibrous adsorbent. The zirconium(IV) loaded bifunctional fibers containing both phosphonate and sulfonate were used as a highly selective ligand exchange adsorbent for trace phosphate removal from water. The precursory fiber of the bifunctional fibers was co-grafted by polymerization of chloromethylstyrene and styrene onto polyethylene coated polypropylene fiber and then bifunctional fibers were prepared by Arbusov reaction followed by phosphorylation and sulfonation. Phosphate adsorption experimental work was carried out in column approach. Phosphate adsorption increased with decreasing the pH of feed solutions. An increase in the feeds flow rate brings a decrease in both breakthrough capacity and total adsorption. The effect of competing anions on phosphate adsorption systems was investigated. The experimental findings reveal that the phosphate adsorption was not affected in the presence of competing anions such as chloride and sulfate despite the enhancement of the breakthrough points and total adsorption. Due to high selectivity to phosphate species, low concentration level of phosphate (0.22 mg/L) was removed at high feed flow rate of 450 h−1 in space velocity. The adsorbed phosphate on the Zr(IV) loaded fibrous column was quantitatively eluted with 0.1 M NaOH solution and then the column was regenerated by 0.5 M H2SO4 for the next adsorption operation. During many adsorption-elution-regeneration cycles, no measurable Zr(IV) was found in the column effluents. Therefore, the Zr(IV) loaded bifunctional fibrous adsorbent is to be an effective means to treat wastewater to prevent eutrophication in the receiving water bodies for long time without any deterioration.  相似文献   

15.
Four short-term microbiological toxicity screening tests were compared using the following test chemicals: 3,5 dichlorophenol, cetyl trimethyl ammonium chloride, sodium lauryl sulfate, phenol, copper(II) sulfate, mercury(II) chloride and zinc(II) sulfate. These seven chemicals represent a wide range of toxicity. The methods examined were Beckman's Microtox system, the Spirillum volutans motility test, inhibition of respiratory activity of activated sludge, and inhibition of activated sludge TTC-dehydrogenase activity.The results obtained indicate that each method has its own toxicity sensitivity pattern, and among the substances tested, only mercury(II) chloride and phenol were ranked equally by the four methods as the most and the least toxic chemical, respectively. In a tentative ranking of the methods, according to sensitivity, the Microtox test came out as the most sensitive test, followed by the Spirillum test, which in turn appeared more sensitive than the two sludge tests. This ranking has meaning only in a statistical sense, however, and the variable nature of the results support the philosophy that for assessing toxicity more thoroughly, a battery of several tests is required.  相似文献   

16.
Super-powdered activated carbon (S-PAC) is activated carbon of much finer particle size than powdered activated carbon (PAC). Geosmin is a naturally occurring taste and odor compound that impairs aesthetic quality in drinking water. Experiments on geosmin adsorption on S-PAC and PAC were conducted, and the results using adsorption kinetic models were analyzed. PAC pulverization, which produced the S-PAC, did not change geosmin adsorption capacity, and geosmin adsorption capacities did not differ between S-PAC and PAC. Geosmin adsorption kinetics, however, were much higher on S-PAC than on PAC. A solution to the branched pore kinetic model (BPKM) was developed, and experimental adsorption kinetic data were analyzed by BPKM and by a homogeneous surface diffusion model (HSDM). The HSDM describing the adsorption behavior of geosmin required different surface diffusivity values for S-PAC and PAC, which indicated a decrease in surface diffusivity apparently associated with activated carbon particle size. The BPKM, consisting of macropore diffusion followed by mass transfer from macropore to micropore, successfully described the batch adsorption kinetics on S-PAC and PAC with the same set of model parameter values, including surface diffusivity. The BPKM simulation clearly showed geosmin removal was improved as activated carbon particle size decreased. The simulation also implied that the rate-determining step in overall mass transfer shifted from intraparticle radial diffusion in macropores to local mass transfer from macropore to micropore. Sensitivity analysis showed that adsorptive removal of geosmin improved with decrease in activated carbon particle size down to 1 μm, but further particle size reduction produced little improvement.  相似文献   

17.
用季铵盐离子液体对椰壳活性炭改性,对比研究活性炭改性前后及吸附甲苯前后的燃爆参数,探索活性炭吸附VOCs过程气-固异相混合体系的燃爆规律。改性后活性炭自燃点从319.3 ℃提高到345.7 ℃,共同吸附甲苯后其自燃点从307.7 ℃提高到327.1 ℃。利用20 L球形爆炸测试装置测得活性炭改性后粉体爆炸下限从1.5~2.5 g/m3提高到7~8 g/m3;活性炭改性前吸附甲苯后混合体的爆炸下限小于1.5 g/m3,改性后吸附甲苯的混合体爆炸下限为2~3 g/m3。在200 g/m3条件下,二者最大爆炸压力分别为0.57,0.53 MPa,爆炸压力有所降低。研究结果表明,用季铵盐离子液体改性后的活性炭不仅吸附VOCs的能力得到增强,而且系统燃爆危险性降低。  相似文献   

18.
通过"前驱体导入-原位沉积"的工艺路线,将水合氧化铈(HCO)纳米颗粒负载入强碱阴离子交换树脂(SAE)孔道内,制得复合纳米吸附剂HCO@SAE并用于污水中磷酸盐的深度去除。试验结果表明:与其母体材料SAE、粉末活性炭(PAC)和大孔吸附树脂XAD-4相比,HCO@SAE具有最佳的磷酸盐吸附性能。溶液pH值对HCO@SAE吸附磷酸盐的性能有较大影响,且在中性条件下可获得最大的磷酸盐吸附量(30.96 mgP/g)。得益于负载HCO纳米颗粒对磷酸盐的专属内配位络合作用,HCO@SAE能够在共存高浓度竞争离子的条件下实现对磷酸盐的选择性吸附。采用NaOH-NaCl混合溶液作为脱附剂可实现对吸附饱和HCO@SAE的高效再生,再生后吸附性能保持稳定,从而实现多批次循环吸附操作。  相似文献   

19.
There is a need for developing low cost, easily and abundantly available, yet efficient, adsorbents for the removal of phosphates during the tertiary treatment of wastewaters. The tamarind nut shell activated carbon (TNSAC) prepared on a laboratory scale has been used to evaluate its performance for phosphate adsorption. This paper describes the laboratory production of this adsorbent material in its various forms, and discusses the effects of the TNSAC process variables (the unrinsed and rinsed forms of the TNSAC and the impregnation ratio) on its performance in adsorbing phosphate. The material has been shown to be a good alternative adsorbent. As much as 95% phosphate removal by the unrinsed TNSAC is possible in about 30 min under the test conditions. The phosphate adsorbing capacity is about two times higher for the unrinsed TNSAC in comparison to the rinsed TNSAC. The adsorption rates, however, transit to extremely low rates towards the end when equilibrium conditions could be attained in about 2 h contact time. The phosphate removal mechanics are adsorption and precipitation/ion exchange when unrinsed TNSAC is used, and adsorption alone for the rinsed TNSAC. The maximum phosphate removal is found to take place at an impregnation ratio of 1.0 for both forms of the TNSAC.  相似文献   

20.
Haberkamp J  Ruhl AS  Ernst M  Jekel M 《Water research》2007,41(17):3794-3802
Membrane fouling by macromolecular dissolved organic compounds is still a fundamental drawback in low-pressure membrane filtration of secondary effluent. In this study, pre-treatment of secondary effluent by coagulation and/or adsorption was investigated in terms of removal of different dissolved organic carbon (DOC) fractions, especially macromolecular substances. DOC fractionation has been characterised by size exclusion chromatography. Adsorption tests using four commercially available activated carbons yielded a removal of small as well as larger organic compounds, revealing differences in the affinity towards macromolecules depending on the type of applied activated carbon. By contrast, coagulation removed predominantly larger molecules, i.e., biopolymers and humic substances. In terms of DOC reduction, the coagulant ferric chloride was superior to aluminium chloride. A combination of coagulation and adsorption resulted in the addition of individual removal efficiencies, suggesting that different fractions of organic compounds were involved in each of the processes. After removal of macromolecular organic compounds either by coagulation or by adsorption, a significant reduction of membrane fouling was observed in tests using two different types of ultrafiltration flat-sheet membranes in 20-h cross-flow filtration tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号