共查询到20条相似文献,搜索用时 78 毫秒
1.
燃气负荷预测是一项让城市安全经济地调配燃气的重要的工作. 目前, 基于注意力机制的Seq2Seq模型越来越多地应用于燃气数据预测, 是一种有效的燃气负荷预测方法. 然而, 针对燃气负荷数据这种突变频率高、幅度大的特点, 一般基于注意力机制的Seq2Seq模型难以提取数据中的多维时间模式信息与应对数据随机突变情况, 在处理影响因素复杂的燃气负荷的预测问题时仍然需要改进. 为此, 本文提出多维注意力机制Seq2Seq模型. 一方面设计研究了多层次时间注意力模块, 综合单时间步长、多时间步长的注意力计算提取数据中不同时间模式信息; 另一方面, 设计增加了局部历史注意力模块, 以改进模型中无法区分重要历史信息的缺陷, 使模型在预测时倾向于参考更为重要的历史信息. 本改进模型针对燃气负荷的独特特性, 具有较好的预测表现. 使用国内某市区的燃气消耗数据与2016年电工数学建模竞赛的电力负荷数据的实验结果表明, 本改进模型相对于一般注意力机制Seq2Seq模型, MAE分别降低了17%与9%. 相似文献
2.
城市燃气负荷预测是城市燃气管网系统运行调度中的重要内容.针对燃气负荷数据的周期性和非线性特点,以及单一模型存在的局限性,本文提出一种ESN和改进RBF神经网络的组合预测模型.首先用核Fisher线性判别对原始数据进行降维,其次用ESN模型进行初步预测,然后将ESN的预测结果作为RBF神经网络的输入来构建组合模型,并将差分进化算法和梯度下降算法结合,对RBF神经网络的结构和参数同时进行训练和优化,以增强算法的局部搜索能力,加快收敛速度.实验结果表明,本文模型比原组合模型的预测精度更高. 相似文献
3.
基于优化小波BP神经网络的燃气短期负荷预测 总被引:3,自引:0,他引:3
在燃气短期负荷预测问题的研究中,燃气负荷由于受天气、人为活动等因素的影响,呈现出一种非线性特性,单个神经网络的局限性限制了其预测精度.为了有效的预测天然气短期负荷,提出了一种混沌遗传算法优化的小波BP神经网络预测模型.小波网络结合小波变换良好的时频局部特性和神经网络的自学习能力,加强了网络的函数逼近能力.利用混沌遗传算法的全局优化搜素能力对网络连接权值、阈值和伸缩平移尺度的优化求解,加快了网络的收敛的速度,建立最优的燃气负荷预测模型.将组合模型应用于上海燃气短期负荷预测,结果表明改进检测模型具有更好的非线性拟合能力和更高的预测精度. 相似文献
4.
针对燃气负荷数据非线性、非平稳性的特点,本文提出一种基于改进的LMD算法与GRU神经网络的组合预测模型.模型首先利用改进后的LMD算法对燃气负荷数据进行序列分解,改进的LMD方法采用分段牛顿插值法代替传统的滑动平均值法来获得局部均值函数和包络估计函数,改善了传统LMD方法存在的过平滑问题.之后,再将得到的若干PF分量进行小波阈值去噪处理,获得有效的分量数据.最后,利用GRU神经网络分别预测各分量值,将它们相加得到最终的负荷预测值.仿真实验表明,提出的方法与单个GRU神经网络以及结合传统LMD算法的GRU网络相比,预测精度更高. 相似文献
5.
燃气负荷受到天气状况和经济发展等多种因素的影响, 造成燃气变化趋势具有较大的复杂性和特征因子较大的冗余性, 造成预测精度的下降. 为了解决这个问题, 在处理燃气负荷的复杂性中使用EEMD自适应的时频局部化分析方法, 将非线性非平稳的燃气负荷数据分解为平稳的本征模式分量及剩余项. 在解决特征因子之间的冗余性中, 在PCA中加入互信息分析, 使用互信息代替协方差矩阵的特征值选择特征向量, 可以有效避免PCA仅仅考虑特征之间的相关性, 忽略了与燃气负荷值关系的缺点. 最后针对不同的子序列建立对应的LSTM模型, 重构各个分量的预测值产生最后的结果. 使用上海的燃气数据进行验证, 实验结果证明本文提出的方法测试集MAPE达到6.36%, 低于其他模型的误差. 相似文献
6.
电力负荷数据的精准预测不仅能够保证电网可以安全地长期运行,而且能够提高经济效益和社会效益.针对电力负荷值的变化而导致变化规律很难用具体数学函数式表达的问题,提出了一种基于改进DBN的用电负荷预测模型.通过遗传算法选取网络权重,并将其应用于电网负荷预测.通过与BP网络模型的仿真对比可以得出,改进的DBN网络模型能够更好更... 相似文献
7.
8.
针对遗传算法早熟的缺陷,提出了改进的交叉,变异策略,采用移民算子等方法改善遗传算法的性能.并把此方法应用到神经网络的训练中,对电力系统短期负荷进行预测取得了较为理想的效果. 相似文献
9.
城市燃气负荷预测是城市天然气调配的重要环节。在对燃气负荷时间序列进行小波周期分析的基础上,建立燃气负荷的基于ARIMA的神经网络温度矫正模型,ARIMA模型对年周期数据进行平滑,有效去除了过去的短期影响;将大气温度作为神经网络的输入对ARIMA模型预测值进行修正。经过检验,该模型很好地揭示了燃气负荷时间序列的特征,预测效果较好。 相似文献
10.
11.
一种遗传模糊聚类算法及其应用 总被引:1,自引:1,他引:1
研究一种基于遗传算法的模糊聚类方法,即将遗传算法得到的聚类中心作为模糊C-均值(FCM)聚类算法初值,这样既可以克服FCM算法对初始中心敏感的缺点,也可以解决遗传算法只能找到近似解的问题。将算法用于通信信号的星座聚类,根据聚类有效性函数自适应地确定聚类中心,并完成信号类型的识别。仿真实验证明,当存在较小的定时误差时,算法对PSK和QAM信号仍然是有效的。 相似文献
12.
混合GP-GA用于信息系统建模预测的研究 总被引:10,自引:1,他引:10
该文克服了传统建模方法在模型选取及参数估计方面的困难与不足,提出了利用改进的遗传程序设计和改进的遗传算法相结合的混合GP-GA算法。一方面,遗传程序设计中加入了简约压力项,控制了代码过度增长,实现了不加先验知识的简洁非线性模型的自动获取。另一方面,遗传算法采用Gray编码,随机整群抽样选择,以优化模型中的参数,这在一定程度上补偿了遗传程序设计在演化过程中具有较好结构的模型可能因为其中的参数未能达到最优而被淘汰的损失。仿真实例和实际应用均表明混合GP-GA算法优于普通的回归分析及单纯的遗传程序设计方法,提高了拟合和预测精度,并且更适合反映问题的实际情况。 相似文献
13.
短期负荷预测在电网调度安排和电力市场交易中发挥着重要作用,预测精度高,有利于提高发电设备的利用率和经济调度的有效性。为充分挖掘负荷数据中时序性特征的联系,解决神经网络中由超参数的随机选取导致的预测精度下降问题,提出一种基于教与学的遗传算法(TLBGA)和门控循环单元(GRU)神经网络的短期负荷预测方法。利用灰色关联分析法对原始数据进行相关度分析,剔除冗余特征,使输入与输出保持较好的映射关系,在遗传算法中加入一种基于教与学优化的新型变异算子,用于防止其出现早熟收敛问题,从而提高解的质量。在此基础上,运用改进后的TLBGA算法对GRU神经网络模型进行超参数寻优,更新GRU的模型超参数并使其性能达到最佳状态,以提高负荷预测的精度。对欧洲某地区的电力负荷数据集和美国PJM电力市场公开负荷数据集进行预测,结果表明,该方法的预测精度分别达到了97.1%和97.2%,相比反向传播神经网络、循环神经网络及GRU神经网络模型,具有更高的预测精度。 相似文献
14.
空气中污染物浓度的预测是一个复杂的非线性问题。国内外的研究表明神经网络能够比回归模型更好地预报空气污染物。设计并实现了将用于选择最优预报因子的遗传算法和神经网络算法相结合的GA_ANN空气质量预测模型,利用某市2003~2006年的数据建立神经网络空气质量预测模型,对该市2007年全年SO2和NO2的预测实验表明,GA_ANN模型比单纯的神经网络模型具有更高的预报精度。 相似文献
15.
16.
田东平 《计算机工程与应用》2008,44(31):60-63
模糊自适应遗传算法是将模糊控制器应用于遗传算法性能和参数控制的一种新型进化算法。提出了一种2输入和2输出的改进模糊自适应遗传算法。一方面,算法采用混沌初始化,提高了初始群体的质量;另一方面,算法将群体适应度方差作为模糊控制器的一个输入参量,来度量群体在空间分布的离散程度。将群体适应度均值商作为模糊控制器的另一个输入参量,来度量群体中个体的多样性。从而自适应地控制算法在进化过程中的交叉概率和变异概率。测试函数仿真结果表明,该算法很好地平衡了“开发”与“探测”,取得了较为满意的优化结果。 相似文献
17.
18.
提出一种协同演化聚类算法,该算法使用改进的掩码方式动态决定聚类中心的数目。将种群划分成两个子种群,分别采用遗传算法和差分进化算法进行演化,遗传算法侧重于全局寻优,差分进化算法注重于局部搜索。在演化的过程中,利用不同的间隔迁移策略相互交换优良个体,使算法的全局探索能力和局部搜索能力得到均衡。通过性能测试、聚类中心数目和运行时间测试等实验证明该算法的优越性。 相似文献
19.
Gause竞争型协同进化算法在FNN中的应用 总被引:2,自引:0,他引:2
自从60年代J.霍兰提出遗传算法以来,模拟进化算法得到了很大的发展和应用。协同进化算法是针对遗传算法的不足提出,还处于研究初步阶段。该文在竞争型协同进化的基础上,借鉴生态学中物种竞争模型,提出了基于Gause竞争方程的竞争型协同进化算法,并将该算法应用于模糊神经系统的辨识问题上。实验证明,该算法比标准遗传算法、典型竞争型协同进化算法和BP学习算法具有更好的全局收敛性和更快的收敛速度,在一定程度上解决了标准遗传算法的不足。 相似文献
20.
基于凸优化和遗传算法的分层多播自适应优化 总被引:1,自引:0,他引:1
针对无线网络上视频多播效用优化问题,提出了一种新的结合自适应调制编码的分层多播自适应优化方法。具体做法是将视频的各层对应传输于不同的自适应调制编码模式,并对各视频层分配合适的带宽,如果效用函数为凸函数,则系统效用的优化问题转换成凸优化问题,若效用函数无凸性限制,并考虑实际因素,即视频分层编码的层数限制以及有限的、可选择的各层速率之后,新的系统优化问题则通过遗传算法求解。仿真结果证明了该方法的有效性。 相似文献