首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effect of electron beam (EB) irradiation on the properties and compatibility of poly(ethylene 2,6‐naphthalate) (PEN)/poly(ethylene terephthalate) (PET) blends was investigated. Upon EB irradiation, PEN/PET blends underwent transesterification reactions, resulting in the formation of more random copolymers from the original binary pair. The degree of transesterification increased with dose rate, and all of the irradiated blends exhibited a single glass transition temperature. This indicated that transesterification reactions promoted by EB irradiation led to the formation of a single phase. Transesterification reactions promoted by EB irradiation led to more random copolymers, and the reduced regularity in the irradiated blends decreased the melting temperature. A higher degree of randomness and lower number‐average sequence lengths for the blend systems indicated that a more random chain structure was formed in the blends. The rheological measurements demonstrated that the irradiated PEN/PET blends were miscible. EB irradiation could promote transesterification reaction, thus enhancing the compatibility of PEN/PET blends.  相似文献   

2.
Miscibility and morphology of poly(ethylene 2,6‐naphthalate)/poly(pentamethylene terephthalate)/poly(ether imide) (PEN/PPT/PEI) blends were studied by differential scanning calorimetry (DSC), optical microscopy (OM), proton nuclear magnetic resonance imaging (1H‐NMR), and wide‐angle X‐ray diffraction (WAXD). OM and DSC results from ternary blends revealed the immiscibility of PEN/PPT/PEI blends, but ternary blends of all compositions were phase‐homogeneous following heat treatment at 300°C for over 60 min. Annealing samples at 300°C yielded an amorphous blend with a clear and single Tg at the final state. Experimental data from 1H‐NMR revealed that PEN/PPT copolymers (ENPT) were formed by the so‐called transesterification. The effect of transesterification on glass transition and crystallization was discussed in detail. The sequence structures of the copolyester were identified by triad analysis, which showed that the mean sequence lengths became shorter and the randomness increased with heating time. The results reveal that a random copolymer improved the miscibility of the ternary blends, in which, the length of the homo segments in the polymer chain decreased and the crystal formation was disturbed because of the irregularity of the structure, as the exchange reaction proceeded. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3840–3849, 2006  相似文献   

3.
The occurrence of transesterification reactions in poly(ethylene terephthalate) (PET)/poly(ethylene naphthalate) (PEN) blends prepared in presence of triphenyl phosphite (TPP) was investigated. When PEN was processed with TPP, which is a known chain extender for PET, chain extension reactions also took place. Torqueprocessing time curves obtained during preparation of 75/25 PET/PEN blends containing TPP, showed a build‐up profile followed by a fast decrease that was interpreted as chain extension between blend components and degradation due to phosphite residues formation, respectively. Although transesterification inhibition was expected, this type of reaction was not suppressed by TPP.  相似文献   

4.
An attempt was made to explore the effects of the interchange reactions on the viscoelastic behavior of binary blends based on poly(ethylene terephthalate) (PET)/poly(ethylene naphthalate) (PEN) and their nanocomposites. It was seen that with an increase in the number of extrusion runs and mixing temperature, the extent of reaction (X) and degree of randomness (RD) both increased, whereas the average sequence block lengths values were decreased. On the contrary, the blend composition did not play a significant role on X and RD values. Addition of nanoclay inhibited the transreactions in PET/PEN blends. The absence of crystallization peaks implied that the crystalline structure was destroyed as a result of blending and an amorphous system was created possibly due to the transreactions simultaneously with the formation of random copolymers inhibiting the crystallization process. The rheological investigations showed that the addition of PEN into the PEN/PET blends enhanced the storage modulus, loss modulus, and complex viscosity. The viscosity upswing observed at low‐frequency region in the case of nanocomposite systems evidently confirmed the occurrence of transreactions. Nonetheless, a significant increment in the viscoelastic properties was perceived in the presence of nanoclay corroborating the proper nanoclay distribution throughout the PET/PEN blend system. POLYM. ENG. SCI., 53:2556–2567, 2013. © 2013 Society of Plastics Engineers  相似文献   

5.
To improve the barrier properties of poly(ethylene terephthalate) (PET), PET/poly(ethylene 2,6‐naphthalate) (PEN) blends with different concentrations of PEN were prepared and were then processed into biaxially oriented PET/PEN films. The air permeability of bioriented films of pure PET, pure PEN, and PET/PEN blends were tested by the differential pressure method. The morphology of the blends was studied by scanning electron microscopy (SEM) observation of the impact fracture surfaces of extruded PET/PEN samples, and the morphology of the films was also investigated by SEM. The results of the study indicated that PEN could effectively improve the barrier properties of PET, and the barrier properties of the PET/PEN blends improved with increasing PEN concentration. When the PEN concentration was equal to or less than 30%, as in this study, the PET/PEN blends were phase‐separated; that is, PET formed the continuous phase, whereas PEN formed a dispersed phase of particles, and the interface was firmly integrated because of transesterification. After the PET/PEN blends were bioriented, the PET matrix contained a PEN microstructure consisting of parallel and extended, separate layers. This multilayer microstructure was characterized by microcontinuity, which resulted in improved barrier properties because air permeation was delayed as the air had to detour around the PEN layer structure. At a constant PEN concentration, the more extended the PEN layers were, the better the barrier properties were of the PET/PEN blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1309–1316, 2006  相似文献   

6.
The morphology and properties of blends of poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) that were injection molded under various conditions were studied. Under injection molding conditions that make it possible to secure transparency, blends did not show clear crystallinity at blending ratios of more than 20 mol% in spite of the fact that crystallinity can be observed in the range of PEN content up to 30 mol%. Because both transparency and crystallinity could be secured with a PEN 12 mol% blend, this material was used in injection molding experiments with various injection molding cycles. Whitening occurred with a cycle of 20 sec, and transparency was obtained at 30 sec or more. This was attributed to the fact that transesterification between PET and PEN exceeded 5 mol% and phase solubility (compatibility) between the PET and PEN increased when the injection molding time was 30 sec or longer. However, when the transesterification content exceeded 8 mol%, molecularly oriented crystallization did not occur, even under stretching, and consequently, it was not possible to increase the strength of the material by stretching. PET/PEN blend resins are more easily crystallized by stretch heat‐setting than are PET/PEN copolymer resins. It was understood that this is because residual PET, which has not undergone transesterification, contributes to crystallization. However, because transesterification reduces crystallinity, the heat‐set density of blends did not increase as significantly as that of pure PET, even in high temperature heat‐setting. Gas permeability showed the same tendency as density. Namely, pure PET showed a substantial decrease in oxygen transmission after high temperature heat‐setting, but the decrease in gas permeability in the blend material was small at heat‐set temperatures of 140°C and higher.  相似文献   

7.
In an attempt to minimize the acetaldehyde formation at the processing temperatures (280–300°C) and the outer–inner transesterification reactions in the poly (ethylene terephthalate) (PET)–poly(ethylene naphthalate) (PEN) melt‐mixed blends, the hydroxyl chain ends of PET were capped using benzoyl chloride. The thermal characterization of the melt‐mixed PET–PEN blends at 300°C, as well as that of the corresponding homopolymers, was performed. Degradations were carried out under dynamic heating and isothermal conditions in both flowing nitrogen and static air atmosphere. The initial decomposition temperatures (Ti) were determined to draw useful information about the overall thermal stability of the studied compounds. Also, the glass transition temperature (Tg) was determined by finding data, indicating that the end‐capped copolymers showed a higher degradation stability compared to the unmodified PET and, when blended with PEN, seemed to be efficient in slowing the kinetic of transesterification leading to, for a finite time, the formation of block copolymers, as determined by 1H‐NMR analysis. This is strong and direct evidence that the end‐capping of the ? OH chain ends influences the mechanism and the kinetic of transesterification. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
The production and properties of blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene 2,6‐dicarboxylate) (PEN) with three modified clays are reported. Octadecylammonium chloride and maleic anhydride (MAH) are used to modify the surface of the montmorillonite–Na+ clay particles (clay–Na+) to produce clay–C18 and clay–MAH, respectively, before they are mixed with the PET/PEN system. The transesterification degree, hydrophobicity and the effect of the clays on the mechanical, rheological and thermal properties are analysed. The PET–PEN/clay–C18 system does not show any improvements in the mechanical properties, which is attributed to poor exfoliation. On the other hand, in the PET–PEN/clay–MAH blends, the modified clay restricts crystallization of the matrix, as evidenced in the low value of the crystallization enthalpy. The process‐induced PET–PEN transesterification reaction is affected by the clay particles. Clay–C18 induces the largest proportion of naphthalate–ethylene–terephthalate (NET) blocks, as opposed to clay–Na+ which renders the lowest proportion. The clay readily incorporates in the bulk polymer, but receding contact‐angle measurements reveal a small influence of the particles on the surface properties of the sample. The clay–Na+ blend shows a predominant solid‐like behaviour, as evidenced by the magnitude of the storage modulus in the low‐frequency range, which reflects a high entanglement density and a substantial degree of polymer–particle interactions. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
The transesterification reaction of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) blends during melt‐mixing was studied as a function of blending temperature, blending time, blend composition, processing equipment, and different grades of poly(ethylene terephthalate) and poly(ethylene 2,6‐naphthalate). Results show that the major factors controlling the reaction are the temperature and time of blending. Efficiency of mixing also plays an important role in transesterification. The reaction kinetics can be modeled using a second‐order direct ester–ester interchange reaction. The rate constant (k) was found to have a minimum value at an intermediate PEN content and the activation energy of the rate constant was calculated to be 140 kJ/mol. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2422–2436, 2001  相似文献   

10.
Physical blends of poly(ethylene terephthalate) (PET) and poly(ethylene isophthalate) (PEI), abbreviated PET/PEI (80/20) blends, and of PET and a random poly(ethylene terephthalate‐co‐isophthalate) copolymer containing 40% ethylene isophthalate (PET60I40), abbreviated PET/PET60I40 (50/50) blends, were melt‐mixed at 270°C for different reactive blending times to give a series of copolymers containing 20 mol % of ethylene isophthalic units with different degrees of randomness. 13C‐NMR spectroscopy precisely determined the microstructure of the blends. The thermal and mechanical properties of the blends were evaluated by DSC and tensile assays, and the obtained results were compared with those obtained for PET and a statistically random PETI copolymer with the same composition. The microstructure of the blends gradually changed from a physical blend into a block copolymer, and finally into a random copolymer with the advance of transreaction time. The melting temperature and enthalpy of the blends decreased with the progress of melt‐mixing. Isothermal crystallization studies carried out on molten samples revealed the same trend for the crystallization rate. The effect of reaction time on crystallizability was more pronounced in the case of the PET/PET60I40 (50/50) blends. The Young's modulus of the melt‐mixed blends was comparable to that of PET, whereas the maximum tensile stress decreased with respect to that of PET. All blend samples showed a noticeable brittleness. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3076–3086, 2003  相似文献   

11.
The crystallization kinetics of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were investigated by DSC as functions of crystallization temperature, blend composition, and PET and PEN source. Isothermal crystallization kinetics were evaluated in terms of the Avrami equation. The Avrami exponent (n) is different for PET, PEN, and the blends, indicating different crystallization mechanisms occurring in blends than those in pure PET and PEN. Activation energies of crystallization were calculated from the rate constants, using an Arrhenius‐type expression. Regime theory was used to elucidate the crystallization course of PET/PEN blends as well as that of unblended PET and PEN. The transition from regime II to regime III was clearly observed for each blend sample as the crystallization temperature was decreased. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 23–37, 2001  相似文献   

12.
The phase structure of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends was studied in relation to the molecular weight. The samples were prepared by both solution blends, which showed two glass‐transition temperatures (Tg), and melt blends (MQ), which showed a single Tg, depending on the composition of the blends. The Tg of the MQ series was independent of the molecular weight of the homopolymer, although the degree of transesterification in the blends was affected by the molecular weight. The MQ series showed two exotherms during the heating process of a differential scanning calorimetry scan. The peak temperature and the heat flow of the exotherms were affected by the molecular weight of the homopolymers. The strain‐induced crystallization of the MQ series suggested the independent crystallization of PET and PEN. Based on the results, a microdomain structure of each homopolymer was suggested. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2428–2438, 2005  相似文献   

13.
In the present work, attempts were made to investigate the thermal and mechanical properties of melt‐processed poly(ethylene terephthalate) (PET)/poly(ethylene 2,6‐naphthalate) (PEN) blends and its nanocomposites containing graphene by using differential scanning calorimetry and tensile test experimenting. The results showed that crystallinity, which depends on a blend ratio, completely disappeared in a composition of 50/50. By introducing graphene to PET, even in low concentrations, the crystallinity of samples increased, while the nanocomposite of PEN indicated reverse behavior, and the crystallinity was reduced by adding graphene. In the case of PET‐rich (75/25) nanocomposite blends, by increasing the nano content in the blend, the crystallinity of the samples was enhanced. This behavior was attributed to the nucleating effect of graphene particles in the samples. From the results of mechanical experiments, it was found in PET‐rich blends that by increasing the PEN/PET ratio, the modulus of samples decreased, whereas in the case of PEN‐rich blends, a slight increment of modulus is seen as a result of the increment of the PEN/PET ratio. The two contradicting behaviors were attributed to the reduction of crystallinity of PET‐rich blends by enhancement of PEN/PET ratio and the rigid structure of PEN chains in PEN‐rich blends. Unlike the different modulus change of PET‐rich and PEN‐rich blends, the nanocomposites of these blends similarly indicated an increment of modulus and characteristics of rigid materials by increasing the nano content. Furthermore, the same behavior was detected in nanocomposites of each polymer (PET and PEN nanocomposites). The alteration from ductile to rigid conduction was related to the impedance in the role of graphene plates against the flexibility of polymer chains and high values of graphene modulus. J. VINYL ADDIT. TECHNOL., 23:210–218, 2017. © 2015 Society of Plastics Engineers  相似文献   

14.
Blends of poly(ethylene terephthalate) (PET) and poly (ether esteramide) (PEEA), which is known as an ion conductive polymer, were prepared by melt mixing using a twin screw extruder. Antistatic performance of the molded plaques and the effects of adding ionomers such as lithium neutralized poly(ethylene‐co‐methacrylic acid) copolymer(E/MAA‐Li), magnesium neutralized poly(ethylene‐co‐methacrylic acid) copolymer(E/MAA‐Mg), and zinc neutralized poly(ethylene‐co‐methacrylic acid) copolymer (E/MAA‐Zn) were investigated. Antistatic effect of adding poly(ethylene‐co‐methacrylic acid) copolymer(E/MAA) and polystyrene, and poly(ethylene naphthalate) (PEN) into PET/PEEA blends were also investigated. Here we confirmed that lithium ionomer worked the most effectively in those blend systems. We also confirmed that E/MAA worked to enhance the antistatic performance of PET/PEEA blends. Morphological study of these ternary blends system was conducted by TEM. Specific interaction between PEEA and E/MAA‐Li, and E/MAA were observed. Those ionomers and copolymer domains were encapsulated by PEEA, which could increase the surface area of PEEA in PET matrix. This encapsulation effect explains the unexpected synergy for the static dissipation performance on addition of ionomers and E/MAA to PET/PEEA blends. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

15.
The extent of transesterification in poly(ethylene terephthalate) (PET)/poly(ethylene‐2,6‐naphthalate) (PEN) blends with the addition of PET–PEN copolymers was examined by DSC and 1H‐NMR measurements to evaluate the factor affecting the reaction level at a given temperature and time. Both block (P(ET‐block‐EN)) and random (P(ET‐ran‐EN)) copolymers were used as the copolymers. At a given treatment temperature and time, the level was increased by the addition of P(ET‐block‐EN) into PET/PEN blends. On the other hand, a reverse change was observed when P(ET‐ran‐EN) was mixed with PET/PEN blends. During the treatment, an inhomogeneous phase of the blends changed into the homogeneous one; however, the change showed little effect on the reaction level. The effects of molecular weight on the reaction level were also examined. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Blends composed of poly(ethylene terephthalate) (PET) as the majority component and poly(ethylene naphthalate)(PEN) as the minority component were melt-mixed in a single screw extruder at various PET/PEN compound ratios. Tensile and flexural test results reveal a good PET/PEN composition dependence, indicating that the compatibility of the blends is effective in a macrodomain. In thermal tests, single transitions for Tg, Tm and Tc (crystallization temperature), respectively, are observed from DSC as well as single Tg from DMA except for 50/50 blends. These results suggests that the compatibility is sufficient down to the submicron level. Moreover, isothermal DSC tests along with Avrami analysis indicate that PET's crystallization is significantly retarded when blended with PEN. Results in this study demonstrate that PEN is a highly promising additive to improve PET's spinnability at high speeds.  相似文献   

17.
The glass‐transition temperatures and melting behaviors of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were studied. Two blend systems were used for this work, with PET and PEN of different grades. It was found that Tg increases almost linearly with blend composition. Both the Gibbs–DiMarzio equation and the Fox equation fit experimental data very well, indicating copolymer‐like behavior of the blend systems. Multiple melting peaks were observed for all blend samples as well as for PET and PEN. The equilibrium melting point was obtained using the Hoffman–Weeks method. The melting points of PET and PEN were depressed as a result of the formation of miscible blends and copolymers. The Flory–Huggins theory was used to study the melting‐point depression for the blend system, and the Nishi–Wang equation was used to calculate the interaction parameter (χ12). The calculated χ12 is a small negative number, indicating the formation of thermodynamically stable, miscible blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 11–22, 2001  相似文献   

18.
The article addresses the issue of recycling of poly(ethylene terephtalate) (PET) by melt blending with polycarbonate (PC). PET/PC blends containing various amounts of the immiscible polymers were prepared in a twin‐screw extruder. Selected compositions were also prepared in the presence of an Sn‐based catalyst to assess the influence of transesterification during melt mixing. The degree of miscibility in the blends was studied using differential scanning calorimetry, scanning electron microscopy, and mechanical testing. PET/PC blends exhibit enhanced tensile properties in comparison to neat components for compositions of PET higher than 50% and these properties are improved by the addition of a transesterification catalyst. The PET/PC blend containing 20 wt% of PC, prepared with stannous octoate, shows the smallest size of the dispersed phase because of transesterification reactions that generate copolymer molecules at the interface between the immiscible polymers. The melting temperature of PET is decreased with the increase of the PC content in blends extruded in the presence of the catalyst. Also, the temperatures of the cold crystallization of PET are higher than those of similar blends without added catalyst. Both features give rise to better molding properties because of a shortening of the cooling time in the range of 50–90 wt% of PET. POLYM. ENG. SCI. 46:1378–1386, 2006. © 2006 Society of Plastics Engineers  相似文献   

19.
Polyethylene terephthalate (PET) was blended with two kinds of co[poly(ethylene terephthalate-p-oxybenzoate)] (POB–PET) copolyester, designated as P46 and P64, respectively. The PET and POB–PET copolyester were combined in the ratios of 85/15, 70/30, and 50/50. The blends were melt mixed in a Brabender Plasticorder at 275, 285, and 293°C for different amounts of time. The transesterification reactions during the melt mixing processes of PET with POB–PET copolyester blends were detected by proton nuclear magnetic resonance analysis. The values of the rate constants are a function of temperature and the composition of blends. The transesterification reactions that may occur during the melt mixing processes have been discussed also. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2727–2732, 1999  相似文献   

20.
A series of co[poly(ethylene terephthalate-p-oxybenzoate)] copolyesters, viz., P28, P46, P64, and P82, were synthesized. These copolyesters were blended with poly(ethylene terephthalate) (PET) at the level of 10 wt % at 293°C for different times. The results from proton NMR analysis reveal that a significant amount of the transesterification has been detected in the cases of PET/P28, PET/P46, and PET/P64 blends. The blending time necessary before any transesterification reaction could be detected depends on the composition of copolyester, e.g., a time less than 3 min is needed for both PET/P28 and PET/P46 blends, while a longer time of 8–20 min is needed for the PET/P64 blend. It is concluded that the higher the mol ratio of the POB moiety in the copolyester is the longer the blending time needed to initiate the transesterification. The degree of transesterification is also increased as the duration of melt blending is prolonged. Two-phase morphology was observed by scanning electron microscopy (SEM) micrographs in all the blends. It was observed that the more similar the composition between the copolyester and PET in the blends is the better the miscibility or interfacial adhesion between the two phases. Moreover, the miscibility can be markedly improved by the duration of melt blending. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号