首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clay was modified by trimethylchlorosilane; after modification, hydroxyl groups at the edge of layers were reacted and CEC value was drastically decreased. Polyethylene–clay composites were prepared by melt compounding. Wide angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM) showed that intercalated nanocomposites were formed using organoclay ion‐exchanged from chlorosilane‐modified clay, but conventional composites formed using organoclay directly ion‐exchanged from crude clay. Dynamic mechanical analysis (DMA) of PE and PE–clay composites was conducted; the results demonstrated that nanocomposites were more effective than conventional composites in reinforcement and addition of organoclay resulted in the increase of glass transition temperature (Tg), but crude clay had no effect on Tg of PE–clay composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 676–680, 2004  相似文献   

2.
Acrylonitrile–butadiene–styrene (ABS)–clay composite and intercalated nanocomposites were prepared by melt processing, using Na‐montmorillonite (MMT), several chemically different organically modified MMT (OMMT) and Na‐laponite clays. The polymer–clay hybrids were characterized by WAXD, TEM, DSC, TGA, tensile, and impact tests. Intercalated nanocomposites are formed with organoclays, a composite is obtained with unmodified MMT, and the nanocomposite based on synthetic laponite is almost exfoliated. An unintercalated nanocomposite is formed by one of the organically modified clays, with similar overall stack dispersion as compared to the intercalated nanocomposites. Tg of ABS is unaffected by incorporation of the silicate filler in its matrix upto 4 wt % loading for different aspect ratios and organic modifications. A significant improvement in the onset of thermal decomposition (40–44°C at 4 wt % organoclay) is seen. The Young's modulus shows improvement, the elongation‐at‐break shows reduction, and the tensile strength shows improvement. Notched and unnotched impact strength of the intercalated MMT nanocomposites is lower as compared to that of ABS matrix. However, laponite and overexchanged organomontmorillonite clay lead to improvement in ductility. For the MMT clays, the Young's modulus (E) correlates with the intercalation change in organoclay interlayer separation (Δd001) as influenced by the chemistry of the modifier. Although ABS‐laponite composites are exfoliated, the intercalated OMMT‐based nanocomposites show greater improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Novel organoclays were synthesized by several kinds of phosphonium cations to improve the dispersibility in matrix resin of composites and accelerate the curing of matrix resin. The possibility of the application for epoxy/clay nanocomposites and the thermal, mechanical, and adhesive properties were investigated. Furthermore, the structures and morphologies of the epoxy/clay nanocomposites were evaluated by transmission electron microscopy. Consequently, the corporation of organoclays with different types of phosphonium cations into the epoxy matrix led to different morphologies of the organoclay particles, and then the distribution changes of silicate layers in the epoxy resin influenced the physical properties of the nanocomposites. When high‐reactive phosphonium cations with epoxy groups were adopted, the clay particles were well exfoliated and dispersed. The epoxy/clay nanocomposite realized the high glass‐transition temperature (Tg) and low coefficient of thermal expansion (CTE) in comparison with those of neat epoxy resin. On the other hand, in the case of low‐reactive phoshonium cations, the dispersion states of clay particles were intercalated but not exfoliated. The intercalated clay did not influence the Tg and CTE of the nanocomposite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Biobased nanocomposites and composite fibers were prepared from organosolv lignin/organoclay mixtures by mechanical mixing and subsequent melt intercalation. Two organically‐modified montmorillonite (MMT) clays with different ammonium cations were used. The effect of organoclay varying from 1 to 10 wt % on the mechanical and thermal properties of the nanocomposites was studied. Thermal analysis revealed an increased in Tg for the nanocomposites as compared with the original organosolv lignin. For both organoclays, lignin intercalation into the silicate layers was observed using X‐ray diffraction (XRD). The intercalated hybrids exhibited a substantial increase in tensile strength and melt processability. In the case of organoclay Cloisite 30B, X‐ray analysis indicates the possibility of complete exfoliation at 1 wt % organoclay loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The vulcanization behavior and mechanical properties of clay/fluoroelastomer nanocomposites produced by melt‐mixing of Dyneon FPO 3741 (a terpolymer of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene) with 10 phr of unmodified montmorillonite (CloisiteNA) or di(hydrogenated tallow‐alkyl) dimethyl ammonium‐modified montmorillonites (Cloisite15A and Cloisite20A) were studied. The properties of clay/FKM nanocomposites were compared with composites prepared using 10 and 30 phr of carbon black. The effects of clay surfactant and surfactant concentration on the vulcanization behavior, mechanical, and dynamical properties of peroxide cured composites were studied. XRD results of cured composites showed a decrease in d‐spacing and indicated deintercalation of the clays after the vulcanization process. It was also found that organoclays retard the FKM peroxide vulcanization process. Significantly, higher maximum torque on vulcanization was obtained with organoclays versus unmodified clay and carbon black. Although the morphologies of organoclay/FKM nanocomposites studied by XRD and TEM suggest similar intercalated/exfoliated structures, the organoclay with the lowest concentration of surfactant (95 meq/100 g clay) resulted in the highest increase in torque, modulus, hardness, and tear strength in the clay/FKM nanocomposites. It was also found that organoclays can increase both the hydrodynamic reinforcement and hysteresis loss of FKM nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The influence of two organically modified montmorillonites on the curing, morphology and mechanical properties of epoxy/poly(vinyl acetate)/organoclay ternary nanocomposites was studied. The organoclays and poly(vinyl acetate) (PVAc) provoked contrary effects on the epoxy curing reaction. Ternary nanocomposites developed different morphologies depending on the PVAc content, that were similar to those observed in the epoxy/PVAc binary blends. The organoclays were only located in the epoxy phase independently of the morphology. All nanocomposites showed intercalated structures with similar clay interlayer distances. Both PVAc and organoclays lowered the Tg of the epoxy phase, the presence of clays did not influence the Tg of the PVAc phase. The addition of the organoclays to the epoxy improved stiffness but lowered ductility while the adition of PVAc improved toughness although reduced stiffness of epoxy thermoset. Ternary nanocomposites exhibited optimal properties that combine the favourable effects of the clay and the thermoplastic. POLYM. COMPOS., 37:2184–2195, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
Polybutyl acrylate (PBA) was intercalated into clay by the method of multistep exchange reactions and diffusion polymerization. The clay interlayer surface is modified, and obtaining the modified clay. The structures of the clay‐PBA, clay‐GA (glutamic acid), and the clay‐DMSO (dimethyl sulfoxide) were characterized using X‐ray diffraction (XRD). The new hybrid nanocomposite thermoplastic elastomers were prepared by the clay‐PBA with poly(styrene‐b‐butadiene) block copolymer (SBS) through direct melt intercalation. The dynamic mechanical analysis (DMA) curves of the SBS/modified clay nanocomposites show that partial polystyrene segments of the SBS have intercalated into the modified clay interlayer and exhibited a new glass transition at about 157°C (Tg3). The glass transition temperature of polybutadiene segments (Tg1) and polystyrene segments out of the modified clay interlayer (Tg2) are about ?76 and 94°C, respectively, comparied with about ?79 and 100°C of the neat SBS, and they are basically unchanged. The Tg2 intensity of the SBS‐modified clay decreases with increasing the amounts of the modified clay, and the Tg3 intensity of the SBS‐modified clay decreases with increasing the amounts of the modified clay up to about 8.0 wt %. When the contents of the modified clay are less than about 8.0 wt %, the SBS‐modified clay nanocomposites are homogeneous and transparent. The Tgb and Tgs of the SBS‐clay (mass ratio = 98.0/2.0) are ?78.39 and 98.29°C, respectively. This result shows that the unmodified clay does not essentially affect the Tgb and Tgs of the SBS, and no interactions occur between the SBS and the unmodified clay. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1499–1503, 2002; DOI 10.1002/app.10353  相似文献   

8.
This study reports the glass transition temperature (Tg), and sorption and diffusion of subcritical CO2 gas in polymethyl methacrylate (PMMA) nanocomposites containing organically modified smectite clay, Cloisite 20A (C20A). A range of methods for preparing the PMMA‐clay nanocomposites was investigated and a solution coprecipitation method was selected as the most appropriate. Using this method, PMMA nanocomposite containing 2, 4, 6, and 10 wt% nanoclay loadings were prepared. Wide‐angle X‐ray diffraction (XRD) analysis and scanning electron microscopy (SEM) indicated that the 2 wt% nanocomposite materials had a well‐dispersed intercalated clay structure. The Tg for PMMA‐C20A nanocomposites, as measured by differential scanning calorimetry (DSC), was found to be independent of the clay loading. CO2 solubility studies from 0 to 65°C and pressures up to 5.5 MPa using an in situ gravimetric technique were performed on compression‐molded films. The organoclay was found to have no effect on the solubility of CO2 in PMMA, and therefore the solubility of CO2 in the nanocomposite can be determined from the solubility of CO2 in the matrix polymer alone. Diffusion coefficients were determined using the appropriate transport models for these test conditions and the diffusion coefficients for CO2 in PMMA‐C20A composites were found to increase with organoclay loading. It is believed that the processing path taken to prepare the nanocomposites may have resulted in the agglomeration of the C20A organoclay, thereby preventing the polymer chains from fully wetting and intercalating a large number of clay particles. These agglomerations are responsible for the formation of large‐scale holes within the glassy nanocomposite, which behave as low resistance pathways for gas transport within the PMMA matrix. POLYM. ENG. SCI., 45:904–914, 2005. © 2005 Society of Plastics Engineers  相似文献   

9.
We present a novel approach to improving organoclay exfoliation in a nonpolar matrix, polyethylene. High‐density polyethylene (HDPE) particles were modified by exposure to a reactive gas atmosphere containing F2 and O2. This treatment was aimed at increasing the polarity of the polymer with the formation of carboxyl, hydroxy, and ketone functionalities on the particle surface. The surface‐treated high‐density polyethylene (ST‐HDPE) particles were then melt‐mixed with an appropriate organoclay to form nanocomposites. Transmission electron microscopy (TEM), wide‐angle X‐ray scattering, stress–strain analysis, and Izod impact measurements were used to evaluate the nanocomposite morphology and physical properties. These data were compared to those of equivalent nanocomposites prepared from unmodified HDPE and high‐density polyethylene grafted with maleic anhydride (HDPE‐g‐MA). The nanocomposites prepared from the ST‐HDPE particles exhibited much better properties and organoclay dispersion than those prepared from unmodified HDPE. The level of reinforcement observed in ST‐HDPE‐based nanocomposites was comparable to, if not better than, that seen in HDPE‐g‐MA‐based nanocomposites. However, a comparison of the TEM micrographs suggested better organoclay exfoliation in HDPE‐g‐MA than the current version of ST‐HDPE. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2980–2989, 2006  相似文献   

10.
Glycerol polyglycidyl ether (GPE) and polyglycerol polyglycidyl ether (PGPE) were cured with ε‐poly(L ‐lysine) (PL) using epoxy/amine ratios of 1 : 1 and 2 : 1 to create bio‐based epoxy cross‐linked resins. When PGPE was used as an epoxy resin and the epoxy/amine ratio was 1 : 1, the cured neat resin showed the greatest glass transition temperature (Tg), as measured by differential scanning calorimetry. Next, the mixture of PGPE, PL, and montomorillonite (MMT) at an epoxy/amine ratio of 1 : 1 in water was dried and cured finally at 110°C to create PGPE‐PL/MMT composites. The X‐ray diffraction and transmission electron microscopy measurements revealed that the composites with MMT content 7–15 wt % were exfoliated nanocomposites and the composite with MMT content 20 wt % was an intercalated nanocomposite. The Tg and storage modulus at 50–100°C for the PGPE‐PL/MMT composites measured by DMA increased with increasing MMT content until 15 wt % and decreased at 20 wt %. The tensile strength and modulus of the PGPE‐PL/MMT composites (MMT content 15 wt %: 42 and 5300 MPa) were much greater than those of the cured PGPE‐PL resin (4 and 6 MPa). Aerobic biodegradability of the PGPE‐PL in an aqueous medium was ~ 4% after 90 days, and the PGPE‐PL/MMT nanocomposites with MMT content 7–15 wt % showed lower biodegradability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Polyester-based nanocomposites coatings were synthesized by the in situ polymerization with high speed homogenizer process at the various contents of organic modified montmorillonite (OMMT) to disperse into the polyester matrix. The dispersion state of organoclay was examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The absence of reflection pattern of organoclay and TEM study revealed that organoclay was partially intercalated and exfoliated into the polymer matrix. Mechanical property of polyester-based nanocomposites coatings (PE/OMMT) improved the tensile strength and good formability at the deep drawing test. The viscoelastic behavior of PE/OMMT nanocomposites coatings was observed by dynamic mechanical analysis (DMA). When the content of organoclay was increased, the stiffness of the PE/OMMT nanocomposites coatings increased considerably and Tg of each cured coatings shifted to a lower temperature. Anti-corrosion property was examined by the salt spray test. CNC-3 had little rust after 600 h and it implies that nano-sized layered silicate of organoclay effectively increases the length of the diffusion pathways water molecules. And nano-sized layered silicate of organoclay might be decreased the permeability and could make higher corrosion resistance of PE/OMMT nanocomposites coatings. From those results, CNC-3 had good formability in the deep drawing and also had good anti-corrosion property. So, CNC-3 would be an appropriate coating for automotive pre-coated metal.  相似文献   

12.
Low‐density polyethylene (LDPE)/silicate nanocomposites were prepared by the melt compounding and solution blend methods using unmodified LDPE polymer and layered silicates with different aspect ratio. X‐ray diffraction (XRD) analysis performed on composites obtained by dispersing the organosilicates in molten LDPE evidenced an exfoliated or partially exfoliated structure for the low aspect ratio silicate (laponite) in contrast to the high aspect ratio silicate (montmorillonite), which led to the formation of intercalated nanocomposites. With regard to the preparation method, the melt compounding method was more effective in forming exfoliated/highly intercalated LDPE nanocomposites compared with the solution blend method (using CCl4 as a solvent). A gradual increase in crystallization temperatures (Tc) with increasing laponite content for LDPE‐organolaponite nanocomposites was revealed by differential scanning calorimetry (DSC) measurements. Thermogravimetric analysis and tensile measurements results indicated that thermal stability and elastic modulus increment were more prevalent for nanocomposites prepared using organomontmorillonite as filler. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A new type of polybenzoxazine‐clay nanocomposites were prepared by the in‐situ polymerization of allyl‐functional benzoxazine monomer, bis(3‐allyl‐3,4‐dihydro‐2H‐1,3‐benzoxazinyl)isopropane (B‐ala), in the presence of two different types of organoclay, allyldimethylstearylammonium‐montmorillonite and propyldimethylstearylammonium‐montmorillonite. The organoclays were mixed with molten B‐ala, followed by pouring into glass mold and then gradual curing up to 250°C. DSC and IR were used to follow the cure behavior of B‐ala in the presence of organoclay, indicating that organoclays catalyzed the ring opening of cyclic benzoxazine structure. The XRD of the nanocomposites showed featureless patterns, suggesting the exfoliation of the organoclay into the matrix. The viscoelastic properties of the hybrids showed that the glass transition temperatures (Tg) of the nanocomposites shifted to lower temperature in the presence of small amount of organoclay, but Tg started to increase with the increase of the organoclay content. This result suggests that, in the presence of organoclay, the curing reaction of ally and benzoxazine occurred in a different way, resulting in a different network structure. However, the presence of dispersed layered silicates into the matrix enhanced the thermal stability over the neat thermoset resin. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

14.
Copolymers of polybenzoxazine (BA‐a) and urethane elastomer (PU) with three different structures of isocyanates [i.e., toluene diisocyanate (TDI), diphenylmethane diisocyanate, and isophorone diisocyanate], were examined. The experimental results reveal that the enhancement in glass transition temperature (Tg) of BA‐a/PU copolymers was clearly observed [i.e., Tg of the BA‐a/PU copolymers in 60 : 40 BA‐a : PU system for all isocyanate types (Tg beyond 230°C) was higher than those of the parent resins (165°C for BA‐a and ?70°C for PU)]. It was reported that the degradation temperature increased from 321°C to about 330°C with increasing urethane content. Furthermore, the flexural strength synergism was found at the BA‐a : PU ratio of 90 : 10 for all types of isocyanates. The effect of urethane prepolymer based on TDI rendered the highest Tg, flexural modulus, and flexural strength of the copolymers among the three isocyanates used. The preferable isocyanate of the binary systems for making high processable carbon fiber composites was based on TDI. The flexural strength of the carbon fiber‐reinforced BA‐a : PU based on TDI at 80 wt % of the fiber in cross‐ply orientation provided relatively high values of about 490 MPa. The flexural modulus slightly decreased from 51 GPa for polybenzoxazine to 48 GPa in the 60 : 40 BA‐a : PU system. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Epoxy acrylate (EA) coatings modified with organically modified rectorite (OREC) were synthesized employing the ultraviolet-curing technique. Two kinds of alkyl ammonium ions, octadecyltrimethylammonium chloride (OTAC) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MAOTMA), were used to modify rectorite (REC). The methacrylate functionalities of MAOTMA were capable of reacting with the acrylate groups of EA. The structure of OREC was characterized by FTIR and XRD and the results indicated that the surfactants were successfully intercalated into the REC interlayers via cation exchange process. The morphology of nanocomposites was investigated by SEM and TEM. OREC showed better dispersion in EA matrix compared with unmodified REC. The T g of neat EA obtained by DMA was 75.6°C, while for 5 wt% EA/MAOTMA-REC and EA/OTAC-REC nanocomposites it increased to 76.5 and 80.8°C, respectively. The nanocomposite with 3 wt% loading of OTAC-REC had the highest T g (89.7°C). TGA revealed that the thermal stability of nanocomposites was enhanced by OTAC-REC and MAOTMA-REC and the thermal stability of EA/MAOTMA-REC nanocomposites was better than that of EA/OTAC-REC nanocomposites. The mechanical properties of nanocomposites containing OTAC-REC and MAOTMA-REC were better than those of nanocomposites containing unmodified REC. With increasing OREC content, the adhesive force of nanocomposites decreased slightly and the flexibility increased significantly.  相似文献   

16.
Poly(butylene succinate) (PBS)/clay nanocomposites were prepared by condensation polymerization of 1,4‐butanediol and succinic acid in the presence of an organoclay containing epoxy groups (TFC) and titanium(IV) butoxide as a catalyst. The intercalation and exfoliation of the clay layers in the resulting composite were examined using X‐ray scattering and transmission electron microscopy. The role of the epoxy groups of TFC was investigated for the improvement of the morphology of the composites. The silicate layers in the composite were exfoliated to a greater extent as the epoxy content of TFC was increased from 0.245 to 0.359 mmol g?1, while only intercalated morphology was obtained when no epoxy was present. The improved morphologies were attributed to the enhanced interfacial interactions between PBS and TFC through a chemical reaction of the epoxy groups with the end groups of the PBS. The nonisothermal crystallization process of the composites as well as that of neat PBS is well represented by the Avrami equation as modified by Jeziorny [Jeziorny A, Polymer 19 :1142 (1978)]. The crystallization of the composite took place faster as the epoxy content of the clay increased, due to the more effective nucleation of the well‐dispersed TFC layers. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
The reinforcing effect of organoclay in two epoxy matrices, one rubbery and one glassy, was studied. The rubbery and glassy epoxy matrices were chosen to have a very similar chemistry to minimize its impact on the comparison of properties. The epoxy resin was EPON? 828, and the two hardeners were amine‐terminated polyoxypropylene diols, having different average molecular weights (MW) of 2000 and 230 g/mol, namely Jeffamine® D‐2000 and Jeffamine® D‐230, respectively. The nanocomposites were prepared with the organoclay Cloisite® 30B from Southern Clay Products. The quality of dispersion and intercalation/exfoliation was analyzed by means of X‐ray diffraction (XRD), field emission gun scanning electron microscopy (FEGSEM), and transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to study the curing reactivity and the thermal stability of the epoxy resin systems, respectively. Tensile properties and hardness of epoxy resin and epoxy nanocomposites were measured according to ASTM standards D638‐02 and D2240‐00, respectively. Fracture surfaces were also analyzed by FEGSEM. These two epoxy systems as well as their nanocomposites display totally different physical and mechanical behavior. It is found that the quality of clay dispersion and intercalation/exfoliation, and the mechanical behavior of the glassy and rubbery epoxy nanocomposites are distinct. The results also indicate that the presence of the clay does not significantly affect the Tg of either the rubbery or the glassy epoxy; however, the fracture surface and mechanical properties were found to be influenced by the presence of nanoclay. Finally, several different reinforcing mechanisms are proposed and discussed for the rubbery and glassy epoxy nanocomposites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

18.
Nanocomposites of cellulose acetate and an organically modified montmorillonite (CA/MMTO) were prepared by melt intercalation in a twin‐screw extruder, using two different plasticizers: di‐octyl phthalate (DOP) and triethyl citrate (TEC). The influence of plasticizer type and the organoclay added to the structure, the morphology, and the thermal properties of the nanocomposites was investigated. XRD and SAXS results indicated a significant CA or/and plasticizer intercalation in the clay gallery for the CA/MMTO nanocomposites. In addition, the images obtained by TEM show that the morphology of CA/MMTO nanocomposites is made up of intercalated and exfoliated silicate layers. The glass transition temperature (Tg) of CA with DOP or TEC decreased in at almost same value, which shows the characteristics of both additives as plasticizers for cellulose acetate chains. Tensile tests indicate that the nanocomposites with either of the two plasticizers presented the same performance with respect to material properties. The results demonstrated that, for some applications, TEC is an useful alternative to plasticize CA in order to substitute DOP, a non eco‐friendly plasticizer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
The microstructure and mechanical properties of polypropylene (PP)/OMMT binary nanocomposites and PP/styrene‐6‐(ethylene‐co‐butylenes)‐6‐styrene triblock copolymer (SEBS)/OMMT ternary nanocomposites were investigated using X‐ray diffraction (XRD), transmission electron microscopy (TEM), and rheology and electromechanical testing machine. The results show that the organoclay layers are mainly intercalated and partially exfoliated in the PP‐based nanocomposites. The additions of SEBS and OMMT have no significant effect on the crystallization behavior of PP. At the same time, it can be concluded that the polymer chains of PP and SEBS have intercalated into the organoclay layers and increase the gallery distance after blending process based on the analytical results from TEM, XRD, and rheology, which result in the form of a percolated nanostructure in the PP‐based nanocomposites. The results of mechanical properties show that SEBS filler greatly improve the notched impact strength of PP, but with the sacrifice of strength and stiffness. OMMT can improve the strength and stiffness of PP and slightly enhance the notched impact strength of PP/PP‐g‐MA. In comparison with neat PP, PP/OMMT, and PP/SEBS binary composites, notched impact toughness of the PP/SEBS/OMMT ternary composites significantly increase. Moreover, the stiffness and strength of PP/SEBS/OMMT ternary nanocomposites are slightly enhanced when compared with neat PP. It is believed that the synergistic effect of both SEBS elastomer and OMMT nanoparticles account for the balanced mechanical performance of the ternary nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Nanocomposites based on thermoplastic elastomeric polyurethane (TPU) and layered silicate clay were prepared by in situ synthesis. The properties of nanocomposites of TPU with unmodified clay were compared with that of organically modified clay. The nanocomposites of the TPU and organomodified clay showed better dispersion and exhibited superior properties. Exfoliation of the clay layers was observed at low organoclay contents, whereas an intercalated morphology was observed at higher clay contents. As one of major purposes of this study, the effect of the silicate layers in the nanocomposites on the order–disorder transition temperature (TODT) of the TPU was evaluated from the intensity change of the hydrogen‐bonded and free carbonyl stretching peaks and from the peak position change of the N? H bending peak. The presence of the organoclay increased TODT by approximately 10°C, which indicated improved stability in the phase‐separated domain structure. The layered silicate clay caused a tremendous improvement in the stiffness of the TPU; meanwhile, a reduction in the ultimate elongation was observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3048–3055, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号