首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
We propose a robust immersed finite element method in which an integral equation formulation is used to enforce essential boundary conditions. The solution of a boundary value problem is expressed as the superposition of a finite element solution and an integral equation solution. For computing the finite element solution, the physical domain is embedded into a slightly larger Cartesian (box‐shaped) domain and is discretized using a block‐structured mesh. The defect in the essential boundary conditions, which occurs along the physical domain boundaries, is subsequently corrected with an integral equation method. In order to facilitate the mapping between the finite element and integral equation solutions, the physical domain boundary is represented with a signed distance function on the block‐structured mesh. As a result, only a boundary mesh of the physical domain is necessary and no domain mesh needs to be generated, except for the non‐boundary‐conforming block‐structured mesh. The overall approach is first presented for the Poisson equation and then generalized to incompressible viscous flow equations. As an example of fluid–structure coupling, the settling of a heavy rigid particle in a closed tank is considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In many cases, boundary integral equations contain a domain integral. This can be evaluated by discretization of the domain into domain elements. Historically, this was seen as going against the spirit of boundary element methods, and several methods were developed to avoid this discretization, notably dual and multiple reciprocity methods and particular solution methods. These involved the representation of the interior function with a set of basis functions, generally of the radial type. In this study, meshless methods (dual reciprocity and particular solution) are compared to the direct domain integration methods. The domain integrals are evaluated using traditional methods and also with multipole acceleration. It is found that the direct integration always results in better accuracy, as well as smaller computation times. In addition, the multipole method further improves on the computation times, in particular where multiple evaluations of the integral are required, as when iterative solvers are used. The additional error produced by the multipole acceleration is negligible. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Since the advent of the fast multipole method, large‐scale electromagnetic scattering problems based on the electric field integral equation (EFIE) formulation are generally solved by a Krylov iterative solver. A well‐known fact is that the dense complex non‐hermitian linear system associated to the EFIE becomes ill‐conditioned especially in the high‐frequency regime. As a consequence, this slows down the convergence rate of Krylov subspace iterative solvers. In this work, a new analytic preconditioner based on the combination of a finite element method with a local absorbing boundary condition is proposed to improve the convergence of the iterative solver for an open boundary. Some numerical tests precise the behaviour of the new preconditioner. Moreover, comparisons are performed with the analytic preconditioner based on the Calderòn's relations for integral equations for several kinds of scatterers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A known feature of any mixed interpolation boundary integral equations (BIE)-based methods is that equilibrium is not generally guaranteed in the numerical solution. Here, a complete meshless technique, based on the boundary element-free method (BEFM) with complete equilibrium satisfaction for 2D elastostatic analysis is proposed. The BEFM adopted is a meshless method based on boundary integral equations such as local boundary integral equation (LBIE) method and boundary node method (BNM), differing from them with respect to the integration domain and the approximation scheme.  相似文献   

5.
This paper presents new formulations of the radial integration boundary integral equation (RIBIE) and the radial integration boundary integro-differential equation (RIBIDE) methods for the numerical solution of two-dimensional heat conduction problems with variable coefficients. The methods use a specially constructed parametrix (Levi function) to reduce the boundary-value problem (BVP) to a boundary-domain integral equation (BDIE) or boundary-domain integro-differential equation (BDIDE). The radial integration method is then employed to convert the domain integrals arising in both BDIE and BDIDE methods into equivalent boundary integrals. The resulting formulations lead to pure boundary integral and integro-differential equations with no domain integrals. Numerical examples are presented for several simple problems, for which exact solutions are available, to demonstrate the efficiency of the proposed methods.  相似文献   

6.
The evaluation of volume integrals that arise in conjunction with a hypersingular boundary integral formulation is considered. In a recent work for the standard (singular) boundary integral equation, the volume term was decomposed into an easily computed boundary integral, plus a remainder volume integral with a modified source function. The key feature of this modified function is that it is everywhere zero on the boundary. In this work it is shown that the same basic approach is successful for the hypersingular equation, despite the stronger singularity in the domain integral. Specifically, the volume term can be directly evaluated without a body-fitted volume mesh, by means of a regular grid of cells that cover the domain. Cells that intersect the boundary are treated by continuously extending the integrand to be zero outside the domain. The method and error results for test problems are presented in terms of the three-dimensional Poisson problem, but the techniques are expected to be generally applicable.  相似文献   

7.
This article presents a wideband fast multipole method (FMM) to accelerate the boundary integral equation method for two‐dimensional elastodynamics in frequency domain. The present wideband FMM is established by coupling the low‐frequency FMM and the high‐frequency FMM that are formulated on the ingenious decomposition of the elastodynamic fundamental solution developed by Nishimura's group. For each of the two FMMs, we estimated the approximation parameters, that is, the expansion order for the low‐frequency FMM and the quadrature order for the high‐frequency FMM according to the requested accuracy, considering the coexistence of the derivatives of the Helmholtz kernels for the longitudinal and transcendental waves in the Burton–Muller type boundary integral equation of interest. In the numerical tests, the error resulting from the fast multipole approximation was monotonically decreased as the requested accuracy level was raised. Also, the computational complexity of the present fast boundary integral equation method agreed with the theory, that is, Nlog N, where N is the number of boundary elements in a series of scattering problems. The present fast boundary integral equation method is promising for simulations of the elastic systems with subwavelength structures. As an example, the wave propagation along a waveguide fabricated in a finite‐size phononic crystal was demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, based on the general stress–strain relationship, displacement and stress boundary‐domain integral equations are established for single medium with varying material properties. From the established integral equations, single interface integral equations are derived for solving general multi‐medium mechanics problems by making use of the variation feature of the material properties. The displacement and stress interface integral equations derived in this paper can be applied to solve non‐homogeneous, anisotropic, and non‐linear multi‐medium problems in a unified way. By imposing some assumptions on the derived integral equations, detailed expressions for some specific mechanics problems are deduced, and a few numerical examples are given to demonstrate the correctness and robustness of the derived displacement and stress interface integral equations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Existing convergence estimates for numerical scattering methods based on boundary integral equations are asymptotic in the limit of vanishing discretization length, and break down as the electrical size of the problem grows. In order to analyse the efficiency and accuracy of numerical methods for the large scattering problems of interest in computational electromagnetics, we study the spectrum of the electric field integral equation (EFIE) for an infinite, conducting strip for both the TM (weakly singular kernel) and TE polarizations (hypersingular kernel). Due to the self‐coupling of surface wave modes, the condition number of the discretized integral equation increases as the square root of the electrical size of the strip for both polarizations. From the spectrum of the EFIE, the solution error introduced by discretization of the integral equation can also be estimated. Away from the edge singularities of the solution, the error is second order in the discretization length for low‐order bases with exact integration of matrix elements, and is first order if an approximate quadrature rule is employed. Comparison with numerical results demonstrates the validity of these condition number and solution error estimates. The spectral theory offers insights into the behaviour of numerical methods commonly observed in computational electromagnetics. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

A novel integral equation method is developed in this paper for the analysis of two‐dimensional general anisotropic elastic bodies with cracks. In contrast to the conventional boundary integral methods based on reciprocal work theorem, the present method is derived from Stroh's formalism for anisotropic elasticity in conjunction with Cauchy's integral formula. The proposed boundary integral equations contain boundary displacement gradients and tractions on the non‐crack boundary and the dislocations on the crack lines. In cases where only the crack faces are subjected to tractions, the integrals on the non‐crack boundary are non‐singular. The boundary integral equations can be solved using Gaussian‐type integration formulas directly without dividing the boundary into discrete elements. Numerical examples of stress intensity factors are given to illustrate the effectiveness and accuracy of the present method.  相似文献   

11.
This work presents a multi‐domain decomposition integral equation method for the numerical solution of domain dominant problems, for which it is known that the standard Boundary Element Method (BEM) is in disadvantage in comparison with classical domain schemes, such as Finite Difference (FDM) and Finite Element (FEM) methods. As in the recently developed Green Element Method (GEM), in the present approach the original domain is divided into several subdomains. In each of them the corresponding Green's integral representational formula is applied, and on the interfaces of the adjacent subregions the full matching conditions are imposed. In contrast with the GEM, where in each subregion the domain integrals are computed by the use of cell integration, here those integrals are transformed into surface integrals at the contour of each subregion via the Dual Reciprocity Method (DRM), using some of the most efficient radial basis functions known in the literature on mathematical interpolation. In the numerical examples presented in the paper, the contour elements are defined in terms of isoparametric linear elements, for which the analytical integrations of the kernels of the integral representation formula are known. As in the FEM and GEM the obtained global matrix system possesses a banded structure. However in contrast with these two methods (GEM and non‐Hermitian FEM), here one is able to solve the system for the complete internal nodal variables, i.e. the field variables and their derivatives, without any additional interpolation. Finally, some examples showing the accuracy, the efficiency, and the flexibility of the method for the solution of the linear and non‐linear convection–diffusion equation are presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
A new meshless method based on a regular local integral equation and the moving least‐squares approximation is developed. The present method is a truly meshless one as it does not need a ‘finite element or boundary element mesh’, either for purposes of interpolation of the solution variables, or for the integration of the ‘energy’. All integrals can be easily evaluated over regularly shaped domains (in general, spheres in three‐dimensional problems) and their boundaries. No derivatives of the shape functions are needed in constructing the system stiffness matrix for the internal nodes, as well as for those boundary nodes with no essential‐boundary‐condition‐prescribed sections on their local boundaries. Numerical examples presented in the paper show that high rates of convergence with mesh refinement are achievable, and the computational results for the unknown variable and its derivatives are very accurate. No special post‐processing procedure is required to compute the derivatives of the unknown variable, as the original result, from the moving least‐squares approximation, is smooth enough. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper the meshless local boundary integral equation (LBIE) method for numerically solving the non‐linear two‐dimensional sine‐Gordon (SG) equation is developed. The method is based on the LBIE with moving least‐squares (MLS) approximation. For the MLS, nodal points spread over the analyzed domain are utilized to approximate the interior and boundary variables. The approximation functions are constructed entirely using a set of scattered nodes, and no element or connectivity of the nodes is needed for either the interpolation or the integration purposes. A time‐stepping method is employed to deal with the time derivative and a simple predictor–corrector scheme is performed to eliminate the non‐linearity. A brief discussion is outlined for numerical integrations in the proposed algorithm. Some examples involving line and ring solitons are demonstrated and the conservation of energy in undamped SG equation is investigated. The final numerical results confirm the ability of method to deal with the unsteady non‐linear problems in large domains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
An efficient iterative method for solution of the linear equations arising from a Hermite boundary integral approximation has been developed. Along with equations for the boundary unknowns, the Hermite system incorporates equations for the first‐order surface derivatives (gradient) of the potential, and is therefore substantially larger than the matrix for a corresponding linear approximation. However, by exploiting the structure of the Hermite matrix, a two‐level iterative algorithm has been shown to provide a very efficient solution algorithm. In this approach, the boundary function unknowns are treated separately from the gradient, taking advantage of the sparsity and near‐positive definiteness of the gradient equations. In test problems, the new algorithm significantly reduced computation time compared with iterative solution applied to the full matrix. This approach should prove to be even more effective for the larger systems encountered in three‐dimensional analysis, and increased efficiency should come from pre‐conditioning of the non‐sparse matrix component. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

15.
A new local boundary integral equation (LBIE) method for solving two dimensional transient elastodynamic problems is proposed. The method utilizes, for its meshless implementation, nodal points spread over the analyzed domain and employs the moving least squares (MLS) approximation for the interpolation of the interior and boundary variables. On the global boundary, displacements and tractions are treated as independent variables. The local integral representation of displacements at each nodal point contains both surface and volume integrals, since it employs the simple elastostatic fundamental solution and considers the acceleration term as a body force. On the local boundaries, tractions are avoided with the aid of the elastostatic companion solution. The collocation of the local boundary/volume integral equations at all the interior and boundary nodes leads to a final system of ordinary differential equations, which is solved stepwise by the -Wilson finite difference scheme. Direct numerical techniques for the accurate evaluation of both surface and volume integrals are employed and presented in detail. All the strongly singular integrals are computed directly through highly accurate integration techniques. Three representative numerical examples that demonstrate the accuracy of the proposed methodology are provided.  相似文献   

16.
 In the present paper the Trefftz function as a test function is used to derive the local boundary integral equations (LBIE) for linear elasticity. Since Trefftz functions are regular, much less requirements are put on numerical integration than in the conventional boundary integral method. The moving least square (MLS) approximation is applied to the displacement field. Then, the traction vectors on the local boundaries are obtained from the gradients of the approximated displacements by using Hooke's law. Nodal points are randomly spread on the domain of the analysed body. The present method is a truly meshless method, as it does not need a finite element mesh, either for purposes of interpolation of the solution variables, or for the integration of the energy. Two ways are presented to formulate the solution of boundary value problems. In the first one the local boundary integral equations are written in all nodes (interior and boundary nodes). In the second way the LBIE are written only at the interior nodes and at the nodes on the global boundary the prescribed values of displacements and/or tractions are identified with their MLS approximations. Numerical examples for a square patch test and a cantilever beam are presented to illustrate the implementation and performance of the present method. Received 6 November 2000  相似文献   

17.
We consider the efficient numerical solution of the three‐dimensional wave equation with Neumann boundary conditions via time‐domain boundary integral equations. A space‐time Galerkin method with C‐smooth, compactly supported basis functions in time and piecewise polynomial basis functions in space is employed. We discuss the structure of the system matrix and its efficient parallel assembly. Different preconditioning strategies for the solution of the arising systems with block Hessenberg matrices are proposed and investigated numerically. Furthermore, a C++ implementation parallelized by OpenMP and MPI in shared and distributed memory, respectively, is presented. The code is part of the boundary element library BEM4I. Results of numerical experiments including convergence and scalability tests up to a thousand cores on a cluster are provided. The presented implementation shows good parallel scalability of the system matrix assembly. Moreover, the proposed algebraic preconditioner in combination with the FGMRES solver leads to a significant reduction of the computational time. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this article, a non‐singular formulation of the boundary integral equation is developed to solve smooth and non‐smooth interior potential problems in two dimensions. The subtracting and adding‐back technique is used to regularize the singularity of Green's function and to simplify the calculation of the normal derivative of Green's function. After that, a global numerical integration is directly applied at the boundary, and those integration points are also taken as collocation points to simplify the algorithm of computation. The result indicates that this simple method gives the convergence speed of order N ?3 in the smooth boundary cases for both Dirichlet and mix‐type problems. For the non‐smooth cases, the convergence speed drops at O(N ?1/2) for the Dirichlet problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a set of internal stress integral equations is derived for solving thermoelastic problems. A jump term and a strongly singular domain integral associated with the temperature of the material are produced in these equations. The strongly singular domain integral is then regularized using a semi‐analytical technique. To avoid the requirement of discretizing the domain into internal cells, domain integrals included in both displacement and internal stress integral equations are transformed into equivalent boundary integrals using the radial integration method (RIM). Two numerical examples for 2D and 3D, respectively, are presented to verify the derived formulations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
A numerical method based on integral equations is proposed and investigated for the Cauchy problem for the Laplace equation in 3-dimensional smooth bounded doubly connected domains. To numerically reconstruct a harmonic function from knowledge of the function and its normal derivative on the outer of two closed boundary surfaces, the harmonic function is represented as a single-layer potential. Matching this representation against the given data, a system of boundary integral equations is obtained to be solved for two unknown densities. This system is rewritten over the unit sphere under the assumption that each of the two boundary surfaces can be mapped smoothly and one-to-one to the unit sphere. For the discretization of this system, Weinert’s method (PhD, Göttingen, 1990) is employed, which generates a Galerkin type procedure for the numerical solution, and the densities in the system of integral equations are expressed in terms of spherical harmonics. Tikhonov regularization is incorporated, and numerical results are included showing the efficiency of the proposed procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号