首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The rheological and mechanical properties of the DGEBA‐S epoxy copolymer initiated by N‐benzylquinoxalinium hexafluoroantimonate (BQH) as a cationic latent thermal catalyst were investigated. The rheological properties of the DGEBA‐S/BQH system were investigated using a rheometer under isothermal conditions, and the mechanical properties of the casting specimens, involving flexure and impact tests, were also performed. The crosslinking activation energy and mechanical properties of the DGEBA‐S/BQH system were higher than those of the DGEBA/BQH system. This could be attributed to the introduction of sulfone groups with a polar nature to the main chain of the epoxy resins which led to a decrease of molecular motion and an improvement in the toughness of the cured epoxy copolymers. Copyright © 2005 Society of Chemical Industry  相似文献   

2.
The utilization of conducting emeraldine salt (PANI‐ES) and intrinsic leucoemeraldine polyaniline (PANI‐LEB) in the synthesis of DGEBA‐grafted PANI via anionic copolymerization is described. The structures of copolymers obtained were characterized by FTIR, 13C and 1H NMR. The extent of grafting was verified by THF Soxhlet (solvent extraction). The thermal properties of these new copolymers were described and their conductivities were reported. Results obtained indicated that the graft copolymer exhibited higher electrical and thermal conductivities than that of the blend counterpart. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Liquid‐crystalline thermosets (LCTs) have received considerable attention since they exhibit many interesting properties. However, some aspects concerning LCTs are still unexplored. In particular, the structure–property relationships, as far as the organization of liquid‐crystalline (LC) domains in cured thermosets is concerned, have not been fully elucidated yet. We investigated the effect of the presence of a nematic mesophase on the thermal and dynamic mechanical behaviour of p‐(2,3‐epoxypropoxy)phenyl‐p‐(2,3‐epoxypropoxy)benzoate cured with 2,4‐diaminotoluene. Fourier transform infrared spectral analysis showed that epoxy group conversion was complete in both LC and isotropic (ISO) systems; moreover, a greater amount of intermolecular hydrogen bonding in the LC material was found. Thermogravimetric analysis evidenced similar thermal stability for the two systems, but a kinetic analysis of the data showed that the degradation process is more complex for the LC sample, and is characterized by higher activation energy. Dynamic mechanical thermal analysis (DMTA) showed lower glass transition temperature values for the LC system. Solid‐state NMR analysis evidenced lower paramagnetic oxygen absorption for this system. DMTA results show that the ISO material possesses a larger number of physical crosslinks, which act as extra constraints on the molecular motions. In the case of the LCT, the formation of a locally more dense structure is postulated, where the presence of more extended macromolecular segments leads to a smaller number of physical crosslinks, as also confirmed by solid‐state NMR analysis. A more compact molecular packing also leads to an increase of the activation energies of the thermal degradation process of the LC system. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
This paper reports a comparative study of propylene–ethylene copolymer (EP) nanocomposites synthesized using zinc‐ion (Zn2+)‐coated nanosilica (ZNS) and the diglycidyl ether of bisphenol‐A (DGEBA, an epoxy resin)‐modified zinc‐ion‐coated nanosilica (EZNS) as nanofillers. These nanocomposites were prepared using the ‘melt mixing’ method at a constant loading level of 2.5 wt%. This loading level is much lower than that used for fillers in conventional composites. The EP nanocomposites were characterized using wide‐angle X‐ray diffractometer (WAXD), a thermo gravimetric analyzer (TGA), a differential scanning calorimeter (DSC), a dynamic mechanical analyzer (DMA) and scanning electron microscopy (SEM). DMA results showed a higher storage modulus for EP‐epoxy‐modified Zn2+‐coated nanosilica nanocomposite (EP‐EZNS) with respect to EP and EP‐Zn2+‐coated nanosilica nanocomposite (EP‐ZNS). In addition, TGA thermograms showed an increase in degradation temperature of EP in the presence of EZNS. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
Several toughening and crosslinking modifiers were tested in two epoxy resin systems based on the diglycidyl ether of bisphenol A (DGEBA) with the objective to improve the critical stress intensity factor KIC and the glass transition temperature (Tg) simultaneously. An amine hardener (isophorone diamine (IPD)) and a homopolymerization initiator (1‐ethyl‐3‐methylimidazolium acetate (EMIM Ac)) were used as curing agents. The highest effect on the KIC value of the resin system DGEBA/IPD (KIC = 0.72 MPa1/2; Tg = 164°C) was achieved with the dendric polymer Boltorn P501 (10 wt%), but it decreased the Tg (KIC = 1.39 MPa1/2; Tg = 136°C). A high toughening effect with a low decrease of Tg was achieved with a combination of a self‐organized block copolymer (Nanostrength M22N) and silica nanoparticles (Nanopox F400) (KIC =1.15 MPa1/2; Tg =157°C). The KIC value of the resin system DGEBA/EMIM Ac was improved from 0.44 to 0.66 MPa1/2. An improvement of both, the thermal and mechanical properties was established for a combination of a poly(tetrahydrofuran) as toughening modifier (PolyTHF2000) with the post‐crosslinking modifier diethylphosphite (DEP) in the resin system DGEBA/IPD (KIC = 0.86 MPa1/2; Tg = 180°C). A system with chemical linkages between both modifiers was investigated for comparison but yielded inferior results. POLYM. ENG. SCI., 59:86–95, 2019. © 2018 Society of Plastics Engineers  相似文献   

6.
In the present study, the mechanical and thermal properties of sisal fiber‐reinforced unsaturated polyester (UP)‐toughened epoxy composites were investigated. The sisal fibers were chemically treated with alkali (NaOH) and silane solutions in order to improve the interfacial interaction between fibers and matrix. The chemical composition of resins and fibers was identified by using Fourier‐transform infrared spectroscopy. The UP‐toughened epoxy blends were obtained by mixing UP (5, 10, and 15 wt%) into the epoxy resin. The fiber‐reinforced composites were prepared by incorporating sisal fibers (10, 20, and 30 wt%) within the optimized UP‐toughened epoxy blend. Scanning electron microscopy was used to analyze the morphological changes of the fibers and the adhesion between the fibers and the UP‐toughened epoxy system. The results showed that the tensile and flexural strength of (alkali‐silane)‐treated fiber (30 wt%) ‐reinforced composites increased by 83% and 55%, respectively, as compared with that of UP‐toughened epoxy blend. Moreover, thermogravimetric analysis revealed that the (alkali‐silane)‐treated fiber and its composite exhibited higher thermal stability than the untreated and alkali‐treated fiber systems. An increase in storage modulus and glass transition temperature was observed for the UP‐toughened epoxy matrix on reinforcement with treated fibers. The water uptake behavior of both alkali and alkali‐silane‐treated fiber‐reinforced composites is found to be less as compared with the untreated fiber‐reinforced composite. J. VINYL ADDIT. TECHNOL., 23:188–199, 2017. © 2015 Society of Plastics Engineers  相似文献   

7.
Epoxy hybrid‐nanocomposites reinforced with recycled cellulose fibers (RCF) and halloysite nanotubes (HNTs) have been fabricated and investigated. The dispersion of HNTs was studied by synchrotron radiation diffraction (SRD) and transmission electron microscopy (TEM). The influences of RCF/HNTs dispersion on the mechanical properties and thermal properties of these composites have been characterized in terms of flexural strength, flexural modulus, fracture toughness, impact toughness, impact strength, and thermogravimetric analysis. The fracture surface morphology and toughness mechanisms were investigated by SEM. Results indicated that mechanical properties increased because of the addition of HNTs into the epoxy matrix. Flexural strength, flexural modulus, fracture toughness, and impact toughness increased by 20.8, 72.8, 56.5, and 25.0%, respectively, at 1 wt% HNTs load. The presence of RCF dramatically enhanced flexural strength, fracture toughness, impact strength, and impact toughness of the composites by 160%, 350%, 444%, and 263%, respectively. However, adding HNTs to RCF/epoxy showed only slight enhancements in flexural strength and fracture toughness. The inclusion of 5 wt% HNTs into RCF/epoxy ecocomposites increased the impact toughness by 27.6%. The presence of either HNTs or RCF accelerated the thermal degradation of neat epoxy. However, at high temperature, samples reinforced with RCF and HNTs displayed better thermal stability with increased char residue than neat resin. POLYM. COMPOS. 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
Diglycidyl ether of bisphenol-A type epoxy resin cured with diamino diphenyl sulfone was used as the matrix for fiber-reinforced composites to get improved mechanical and thermal properties for the resulting composites. E-glass fiber was used for fiber reinforcement. The morphology, tensile, flexural, impact, dynamic mechanical, and thermal properties of the composites were analyzed. The tensile, flexural, and impact properties showed dramatic improvement with the addition of glass fibers. Dynamic mechanical analysis was performed to obtain the Tg of the cured matrix as well as the composites. The improved thermal stability of the composites was clear from the thermogravimetric analysis. Scanning electron micrographs were taken to understand the interfacial adhesion between the fiber and the matrix. The values of mechanical properties were compared with modified epoxy resin composite system. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

9.
In this study, we synthesized a phosphorus‐containing triply functionalized reactive modifier, DOPO‐tris(azetidine‐2,4‐dione), and a phosphorus‐free doubly functionalized reactive modifier, bis(azetidine‐2,4‐dione), and embedded them into epoxy resin systems. We characterized these synthesized reactive modifiers using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, elemental analysis, and mass spectrometry. During the thermosetting processes, we reacted the epoxy curing agents 4,4‐diaminodiphenylmethane and tris(4‐aminophenyl)amine with the multiply hydrogen‐bonding reactive modifiers and epoxy monomers. The introduction of the DOPO segment, strongly hydrogen bonding malonamide linkages, and hard aromatic groups into the backbones of the synthesized reactive modifiers resulted in epoxy networks exhibiting tailorable crosslinking densities, flexibilities, glass transition temperatures, thermal decomposition temperatures, and flame retardancies. Furthermore, dynamic mechanical analyses indicated that intermolecular hydrogen bonding of these reactive modifiers enhanced the thermal and physical properties of their epoxy resins through the formation of unique pseudocrosslinked polymer networks. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
The kinetics of the cure reaction for a system of bisphenol‐S epoxy resin (BPSER), with 4,4′‐diaminodiphenyl sulfone (DDS) as a curing agent was investigated with a differential scanning calorimeter (DSC). Autocatalytic behaviour was observed in the first stages of the cure which can well be described by the model proposed by Kamal, using two rate constants, k1 and k2, and two reaction orders, m and n. The overall reaction order, m + n, is in the range 2∼2.5, and the activation energy for k1 and k2 was 86.26 and 65.13 kJ mol−1, respectively. In the later stages, a crosslinked network was formed and diffusion control was incorporated to describe the cure. The glass transition temperature (Tg) of the BPSER/DDS samples partially cured isothermally was determined by means of torsional braid analysis (TBA) and the results showed that the reaction rate increased with increasing Tg, in terms of rate constant, but decreased with increasing conversion. It was also found that the  SO2 group both in the epoxy resin and in the hardener increases the Tg values of the cured materials compared with that of BPAER. The thermal degradation kinetics of this system was investigated by thermogravimetric analysis (TGA). It illustrated that the thermal degradation of BPSER/DDS has nth order reaction kinetics. © 2000 Society of Chemical Industry  相似文献   

11.
A thermoplastic modification method was studied for the purpose of improving the toughness and heat resistance and decreasing the curing temperature of the cured epoxy/4, 4′‐diaminodiphenyl sulfone resin system. A polyimide precursor‐polyamic acid (PAA) was used as the modifier which can react with epoxy. The effects of PAA on curing temperature, thermal stability and mechanical properties were investigated. The initial curing temperature (Ti) of the resin with 5 wt % PAA decreased about 50°C. The onset temperature of thermal decomposition and 10 wt %‐weight‐loss temperature for the resin system containing 2 wt % PAA increased about 60°C and 15°C respectively. Besides, the value of impact toughness and plain strain fracture toughness for the modified epoxy resin increased ~ 190% and 55%, respectively. Those changes were attributed to the outstanding thermal and mechanical properties of polyimide, and more importantly to formation of semi‐interpenetrating polymer networks composed by the epoxy network and linear PAA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
The side‐chain polyhedral oligomeric silsesquioxane (POSS)‐type epoxy (IPEP) hybrid material was synthesized, and the particle sizes of the POSS segment were less than 5 nm and which particles dispersed uniformly. The 3D AFM microphotograph of the IPEP/DGEBA (diglycidyl ether of bisphenol A) hybrid material exhibited the unique “island” shape, and their XRD pattern displayed amorphous halo structure. The POSS segments of the IPEP could improve the thermal degradation activation energies. Additionally, introduction of the IPEP into the DGEBA could improve the char yield and provide the antioxidation property in the air atmosphere. The char yields of the IPEP/DGEBA hybrid materials could improve from 14.48 to 19.21% and from 0.18 to 1.17% in the nitrogen and air atmospheres, respectively. The IPEP segments could also improve the hardness when the IPEP contents of the IPEP/DGEBA hybrid materials were less than 50 wt %. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
By varying the cyanate/epoxy ratio, three polyetherimide(PEI)‐modified bisphenol A dicyanate–novolac epoxy resin blends with different epoxy contents were prepared. The effects of epoxy content on the dynamic mechanical behaviour of those blends were investigated by dynamic mechanical thermal analysis. The results showed that the glass transition temperature of the cyanate–epoxy network (Tg1) in the modified blend decreases with epoxy content. When the epoxy content increases, both the width of the glass transition of the cyanate–epoxy network and its peak density are depressed substantially. Although the tangent delta peak value of PEI is basically independent of epoxy content, the Tg of PEI (Tg2) decreases with epoxy content. Tg1 is independent of the PEI loading. When Tg1 is lower than Tg2, however, the Tg1 in the blend with revised phase structure is substantially lower than other blends. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
A novel organic rectorite (OREC) was prepared by treating the natural sodium‐rectorite (Na‐REC) with ionic liquid 1‐hexadecyl‐3‐methylimidazolium bromide ([C16mim]Br). X‐ray diffraction (XRD) analysis showed that the interlayer spacing of the OREC was expanded from 2.23nm to 3.14nm. Furthermore, two types of OREC/epoxy nanocomposites were prepared by using epoxy resin (EP) as matrix, 2‐ethyl‐4‐methylimidazole (2‐E‐4‐MI) and tung oil anhydride (TOA) as curing agents, respectively. XRD and transmission electron microscope (TEM) analysis showed that the intercalated nanocomposite was obtained with addition of the curing agent 2‐E‐4‐MI, and the exfoliated nanocomposite was obtained with addition of the curing agent TOA when the OREC content was less than 2 wt %. For the exfoliated nanocomposite, the mechanical and thermal property tests indicated that it had the highest improvement when OREC content was 2 wt% in EP. Compared to pure EP, 60.3% improvement in tensile strength, 26.7% improvement in bending strength, 34% improvement in bending modulus, 14°C improvement in thermal decomposition temperature (Td) and 5.7°C improvement in glass transition temperature (Tg) were achieved. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
In this study, we present a method to detect cure‐induced strain in an epoxy resin (EP) with a Fiber Bragg Grating (FBG) sensor. By embedding the optical fiber into the EP resin the characteristics during isothermal cure (gel point, vitrification) could be precisely detected due to changes in the fiber strain. In a follow up dynamic temperature scan the coefficient of thermal expansion and the glass transition temperature (Tg) of the fully cured EP were determined by the FBG sensor technique. All results obtained by the fiber optical method showed a very good agreement with those deduced by independent techniques, viz. rheological measurements, differential scanning calorimetry, and thermomechanical analysis. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
The emission of weak visible chemiluminescence (CL) during the cure of a tetraglycidyl 4,4′-diaminodiphenyl methane (TGDDM)-based epoxy resin, with three different concentrations of 4,4′-diaminodiphenylsulfone (DDS) has been studied at 135°C. Spectral analysis indicates that the CL originates from trace oxidation of the TGDDM resin and the emission intensity is sensitive to the viscosity changes during cure. From thermal analysis data, sharp discontinuities in CL intensity are shown to occur at the gel point. The temperature dependence of CL from a cured resin also shows a sharp discontinuity at Tg. These results indicate that CL provides a sensitive monitor of both the kinetics of gelation and the network formation in this epoxy resin.  相似文献   

17.
Electron‐beam irradiation of injection‐molded specimens of polyiminohexamethyleneiminoadipoyl (better known as polyamide‐6,6) was carried out in air at ambient temperature (303 K) and a high temperature (393 K). Most of the irradiated specimens were tensile dumbbells, although a few were cylinders for compressive stress relaxation testing. A few representative samples were dipped in triallyl cyanurate (TAC) solution before ambient‐temperature irradiation. The gel content of the specimens increased with radiation dose and the temperature of irradiation. Moreover, the TAC‐treated specimens showed an increase in gel content over the neat specimens irradiated at the same dose levels. Wide‐angle X‐ray scattering and differential scanning calorimetry studies revealed that the crystallinity decreased with increasing radiation dose. Irradiation at the high temperature and treatment with TAC further decreased the crystallinity compared to irradiation at ambient temperature. As determined from compressive stress relaxation and mechanical and dynamic mechanical properties, the optimized radiation dose for ambient‐temperature radiation was 200 kGy. The gels had a stiffening effect, and the rate of relaxation decreased significantly. The water‐uptake characteristics of the tensile specimens were investigated; this revealed a decrease in the water absorption tendency with increasing gel content. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1633–1644, 2006  相似文献   

18.
This study was conducted on the both solid and solubilized chitosans to propose an approach for the physico‐chemical, thermal and mechanical characterizations of this polysaccharide. The polysaccharide used was a 90% deacetylated chitosan having a molecular weight of 98.4 kDa. The flow property of chitosan solutions was evaluated revealing a shear‐thinning behavior. The thermal characterization was carried out by studying heat specific capacity, glass transition temperature, and thermal conductivity on chitosan dried specimens (solid state). Their Tg were measured by DSC and confirmed by DMA at 102 and 122°C depending on concentrations of initial chitosan solutions. The mechanical characterization was conducted by analyzing Young modulus, tensile strength, and elongation at break of chitosan specimens. They exhibited a higher elongation at break and a lower tensile strength when made from high concentrated chitosan solution (9% w/v). Differences in mechanical behavior of specimens were explained by differences of crystallinity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41257.  相似文献   

19.
Bifunctional, trifunctional, and tetrafunctional epoxy (EP) resins were hardened with stoichiometric amount of 4,4′‐diaminodiphenyl methane in presence and absence of benzoxazine (BOX). The EP/BOX ratio of the hybrid systems was constant, viz. 50/50 wt %. For the bifunctional EP, the EP/BOX range covered the ratios 75/25 and 25/75 wt %, as well. Epoxy‐terminated liquid nitrile rubber (ETBN) was incorporated in 10 wt % in the systems with trifunctional and tetrafunctional EP, and in 10, 15, and 20 wt % in the EP/BOX with bifunctional EP to improve their toughness. Information on the structure and morphology of the hybrid systems was received from differential scanning calorimetric, dynamic‐mechanical thermal analysis, atomic force microscopic, and scanning electron microscopic studies. The flexural, fracture mechanical properties, thermal degradation, and fire resistance of the EP/BOX and EP/BOX/ETBN hybrids were determined. It was found that some homopolymerized BOX was built in the EP/BOX conetwork in form of nanoscale inclusions, whereas ETBN formed micron scaled droplets of sea‐island structure. Incorporation of BOX improved the charring and fire resistance, enhanced the flexural modulus and strength, reduced the glass transition (Tg), the fracture toughness, and energy. Additional modification with ETBN decreased the charring, fire resistance, flexural modulus and strength, as well as Tg, however, improved the fracture toughness and especially the fracture energy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Epoxy hybrid composites fabricated by reinforcing 2‐hydroxy ethyl acrylate (2‐HEA) treated oil palm empty fruit bunch (EFB) and jute fibers. It assume that chemical modification of jute and oil palm EFB fibers increased fiber/matrix interfacial bonding and it results in enhanced thermal properties of hybrid composites. Dynamic mechanical and thermal analysis of treated hybrid composites was carried out. Results indicated that chemical modification of oil palm EFB and jute fibers affect the dynamic mechanical and thermal properties of hybrid composites. The storage modulus values of hybrid composites increases with chemical treatment and loss modulus increased with fiber treatment in hybrid composites. Damping factor peak values of treated hybrid composites shifted toward the lower temperature compared to both untreated hybrid composites. Cole–Cole analysis was made to understand the phase behaviour of the hybrid composites. Thermogravimetric analysis indicated an increased in thermal stability of hybrid composite with the incorporation of chemically modified fibers. POLYM. COMPOS., 36:1669–1674, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号