首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of short‐chain amide (AM) molecules on the intercalation of montmorillonite clay has been investigated by the melt blending of polypropylene (PP) with clay in the presence of AM molecules such as 13‐cis‐docosenamide (erucamide). Polypropylene–clay nanocomposites (PPCNs) were prepared by the co‐intercalation of maleic anhydride grafted polypropylene (PP–MA) and an AM compound. The resulting nanocomposite structures were characterized with X‐ray diffraction (XRD) and transmission electron microscopy, whereas the thermal characterization of the PPCNs was conducted by thermogravimetric analysis. XRD results showed that the AM molecules intercalated into clay galleries and increased the interlayer spacing, a result confirmed by surface energy (contact angle) and melt flow index measurements. This additive allowed the formation of an intercalated nanocomposite structure, but an exfoliated PPCN structure was also formed with the use of AM with a PP–MA‐based compatibilizer. A new preparation method for PPCNs was, therefore, developed by the co‐intercalation of AM and PP–MA; this resulted in a significantly improved degree of intercalation and dispersion. The enhanced thermal stability of PPCN, relative to pure PP, further demonstrated the improved clay dispersion in the nanocomposite structures prepared by this method. A possible mechanism for the co‐intercalation of AM and PP–MA into the clay galleries is proposed, based on hydrogen bonding between these additives and the silicate layers. Consideration is also given to possible chemical reactions and physical interactions in this rather complex system. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Polypropylene/clay nanocomposites (PPCNs) were prepared via an in situ polymerization method with a Ziegler–Natta/clay compound catalyst in which the MgCl2/TiCl4 catalyst was embedded in the clay galleries. The wide‐angle X‐ray diffraction and transmission electron microscopy results showed that the clay particles were highly exfoliated in the polypropylene (PP) matrix. The nonisothermal crystallization kinetics of these PPCNs were investigated by differential scanning calorimetry at various cooling rates. The nucleation activity were calculated by Dobreva's method to demonstrate that the highly dispersed silicate layers acted as effective nucleating agents. The Avrami, Jeziorny, Ozawa, and Mo methods were used to describe the nonisothermal crystallization behavior of the PP and PPCNs. Various parameters of nonisothermal crystallization, such as the crystallization half‐time, crystallization rate constant, and the kinetic parameter F(t), reflected that the highly exfoliated silicate layers significantly accelerated the crystallization process because of its outstanding nucleation effect. The activation energy values of the PP and PPCNs determined by the Kissinger method increased with the addition of the nanosilicate layers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Polypropylene (PP) nanocomposites were prepared by melt intercalation in an intermeshing corotating twin‐screw extruder. The effect of molecular weight of PP‐MA (maleic anhydride‐ modified polypropylene) on clay dispersion and mechanical properties of nanocomposites was investigated. After injection molding, the tensile properties and impact strength were measured. The best overall mechanical properties were found for composites containing PP‐MA having the highest molecular weight. The basal spacing of clay in the composites was measured by X‐ray diffraction (XRD). Nanoscale morphology of the samples was observed by transmission electron microscopy (TEM). The crystallization kinetics was measured by differential scanning calorimetry (DSC) and optical microscopy at a fixed crystallization temperature. Increasing the clay content in PP‐ MA330k/clay, a well‐dispersed two‐component system, caused the impact strength to decrease while the crystallization kinetics and the spherulite size remained almost the same. On the other hand, PP/PP‐MA330k/clay, an intercalated three‐component system containing some dispersed clay as well as the clay tactoids, showed a much smaller size of spherulites and a slight increase in impact strength with increasing the clay content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1562–1570, 2002  相似文献   

4.
We report preparation and characterization of nanoclay from Indian bentonite and imported nanoclays, and their compounding with polypropylene (PP) and maleic anhydride‐grafted PP (MA‐g‐PP) in twin screw extruder. The compounded polymer/nanoclay nanocomposites (PNCs) are molded into a standard specimen for studying its tensile, flexural and impact strength. A wide angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM) study demonstrates intercalation of PP in nanoclays rather than exfoliation for both, indigenous and imported nanoclays. The tensile modulus increased by 41 and 39% for PNC1 (PNC with imported nanoclay) and PNC2 (PNC with indigenous nanoclay) with respect to PP. The flexural modulus for PNC1 and PNC2 also increases by 23 and 22% due to incorporation of 5% nanoclay in PP along with 5% MA‐g‐PP. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

5.
Maleic anhydride grafted low isotactic homopolypropylene elastomer (LiPP‐g‐MAH) is used as a compatibilizer in the melting mixing of polypropylene (PP) and clay. The microstructures of the composites of PP/clay (PPCN) are investigated using a wide‐angle X‐ray diffractometer (WAXD) and transmission electron microscope (TEM) as well as parallel rheometer, which show that PPCN with different phase morphologies have been obtained. It is found that the weight ratio of LiPP‐g‐MAH to clay and the weight content of LiPP‐g‐MAH in PPCN have a strong effect on the final dispersibility of the clay. The rheological response to small amplitude oscillatory shear (SAOS) shows that the storage modulus (G′) at the low frequencies is greatly sensitive to the microstructures in comparison with WAXD measurements. The investigation further indicates that the virgin clay particles, intercalated silicate crystallites, and exfoliated layers may coexist in the matrix at the same time, resulting in the great enhancement of G′ plateau at low frequency region.  相似文献   

6.
Thermal properties and crystallization behavior of ultrafine fully‐vulcanized powdered rubber (UFPR) toughened polypropylene (PP) were studied by Differential scanning calorimetry (DSC) and Wide angle X‐ray diffraction (WAXD) measurements. It was found that the fraction of β‐form in the PP crystal increased at first, then sharply deceased up to zero with increasing UFPR content. This trend did not rely on isothermal crystallization temperature. Moreover, DSC measurements implied that UFPR particles addition affected both isothermal and nonisothermal crystallization behaviors, including the crystallization temperature and the half‐time of crystallization. Furthermore, WAXD test results indicated that the addition of UFPR induced the orientation of the crystallites more or less. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Melt grafting of maleic anhydride (MA) and α‐methylstyrene (AMS) onto polypropylene (PP) was performed by reactive extrusion. Effects of AMS on the graft degree of MA, crystallization behavior, and thermal properties of the graft copolymer were investigated. Results show that the addition of AMS as a comonomer can efficiently improve the MA graft degree. When the molar ratio of AMS to MA is 0.9:1, the maximum MA graft degree is attained, which increases about 56% compared with that using single monomer of MA. The results of the graft degree of MA obtained by chemical titration (CT) agree well with those obtained by Fourier transform infrared spectroscopy (FTIR). Melt flow rate (MFR) measurements indicate that the addition of AMS effectively reduces the degradation of PP molecules. The wide‐angle X‐ray diffraction (WAXD) results show that in comparison with the PP‐g‐MA sample, the PP‐g‐(MA‐AMS) sample shows no new crystalline form, but has a slight decrease in the average crystalline domain size. According to the results of thermogravimetry (TG) and differential scanning calorimetry (DSC), the graft PP in the presence of AMS exhibits a lower melting point and a higher crystallization temperature and thermal stability in comparison with that without AMS. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

8.
Polypropylene (PP)/organoclay (Cloisite©20A) nanocomposites are prepared via direct melt intercalation in a co‐rotating twin screw extruder. Maleic anhydride (MA)‐grafted PP (PP‐g‐MA) is used as a compatibilizer to improve the dispersion of the clay. The formulation used to prepare the nanocomposites is fixed and is equal to 80/15/5 (PP/PP‐g‐MA/Cloisite©20A), expressed in mass fraction. The objective of the present study is to investigate the effects of processing conditions as well as screw profile upon the formation of PP nanocomposites. The parameters studied are the feed rate and the screw speed, which are varied independently, from 4.5 to 29.0 kg/h and from 100 to 300 rpm, respectively. The state of dispersion is quantified by wide angle X‐ray diffraction (WAXD), transmission electron microscopy, and rheological measurements. WAXD results show that the nanocomposites obtained in different conditions have an intercalated structure, with an increase in interlayer spacing. However, this interlayer spacing is globally unaffected by processing parameters. On the opposite, the proportion of exfoliation, estimated by rheological measurements, is depending on operating conditions (screw speed and feed rate). It increases when the feed rate decreases and the screw speed increases. Investigations on the state of dispersion along the screw profile are also presented. They show that no evolution of intercalated structure is observed along the screws and that screw geometry is only efficient in particular extrusion conditions to delaminate clay platelets. Numerical simulations of the twin screw extrusion process, using the software Ludovic©, put in evidence that the total strain is a key factor for characterizing the level of exfoliation in the nanocomposites. POLYM. ENG. SCI. 46:314–323, 2006. © 2006 Society of Plastics Engineers  相似文献   

9.
Polypropylene (PP) clay nanocomposites were injection‐molded using two different coupling agents based on maleic anhydride‐grafted PP (MA‐g‐PP) and two clay loadings. The morphological aspects of these materials were studied by depth profiling. Molecular chain and clay orientations were characterized using attenuated total reflectance‐infrared analysis and transmission electron microscopy (TEM). Both clay platelets and PP molecular chain orientations were found to decrease from the surface toward the core of the injection–molded specimens. Clay intercalation, characterized by both complementary X‐ray diffraction and TEM, was found to be significantly influenced by both the characteristics of the coupling agent used and the type of residual stresses generated at each layer across the thickness of the injection‐molded parts. The use of low‐molecular weight (Mw) MA‐g‐PP led to a uniform intercalation but with no further exfoliation. The use of higher molecular weight MA‐g‐PP led to a heterogeneous intercalation with some signs of exfoliation. The crystallization behavior of PP clay nanocomposites studied by differential scanning calorimetry showed an increase in the level of crystallinity from the surface to the core of the specimens; these results were also confirmed by scanning electron microscopy. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

10.
Two different kinds of clay were organomodified with cetylpyridinium chloride (CPC) as an intercalation agent. Poly(trimethylene terephthalate) (PTT)/organoclay nanocomposites were prepared by the solution intercalation method. Wide‐angle X‐ray diffraction (WAXD) indicated that the layers of clay were intercalated by CPC and the interlayer spacing was a function of the cationic exchange capacity (CEC) of the clay: the higher the CEC, the larger the interlayer spacing is. The WAXD studies showed that the interlayer spacing of organoclay in the nanocomposites depends on the amount of organoclay. From the results of differential scanning calorimetry analysis it was found that clay behaves as a nucleating agent and enhances the crystallization rate of PTT. The maximum enhancement of the crystallization rate for the nanocomposites was observed in nanocomposites containing about 5 wt % organoclay with a range of 1–15 wt %. The thermal stability of the nanocomposites was enhanced by the addition of 1–10 wt % organoclay as found from thermogravimetric analysis. The thermal stability of the PTT/organoclay nanocomposites was related to the organoclay content and the dispersion in the PTT matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3315–3322, 2003  相似文献   

11.
Polypropylene (PP)/clay nanocomposites (PPCNs) were autoclave‐foamed in a batch process. Foaming was performed using supercritical CO2 at 10 MPa, within the temperature range from 130.6°C to 143.4°C, i.e., below the melting temperature of either PPCNs or maleic anhydride‐modified PP (PP‐MA) matrix without clay. The foamed PP‐MA and PPCN2 (prepared at 130.6°C and containing 2 wt% clay) show closed cell structures with pentagonal and/or hexagonal faces, while foams of PPCN4 and PPCN7.5 (prepared at 143.4°C, 4 and 7.5 wt% clay) had spherical cells. Scanning electron microscopy confirmed that foamed PPCNs had high cell density of 107–108 cells/mL, cell sizes in the range of 30–120 μm, cell wall thicknesses of 5–15 μm, and low densities of 0.05–0.3 g/mL. Interestingly, transmission electron microscopic observations of the PPCNs' cell structure showed biaxial flowinduced alignment of clay particles along the cell boundary. In this paper, the correlation between foam structure and rheological properties of the PPCNs is also discussed.  相似文献   

12.
The morphology and nonisothermal crystallization behavior of PP/Novolac blends were studied with scanning electron microscopy, differential scanning calorimeter, polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). The results showed that the crystallization of PP in PP/Novolac blends was strongly influenced by cooling rate, size of Novolac particles, crosslinking, and compatibilizer maleic anhydride‐grafted PP (MPP). In dynamically cured PP/MPP/Novolac blends, the MPP grafted on the surface of cured Novolac particles and formed a chemical linkage through the reaction of anhydride groups with the hexamethylenetetramine. The graft copolymer not only improved interfacial compatibility but also acted as an effective heterogeneous nucleating agent, which accelerates the crystallization of PP. The combination of Avrami and Ozawa equations exhibited great advantages in treating the nonisothermal crystallization kinetics in dynamically cured PP/MPP/Novolac blends. The POM results showed that the spherulite morphology and the size of PP in PP/MPP/Novolac blends were greatly affected by Novolac. WAXD experiment demonstrates that the PP and dynamically cured PP/MPP/Novolac blends showed only the α crystal form. At the same time, the addition of Novolac resin also affects the crystal size of PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Polypropylene/clay (PP/clay) nanocomposites were synthesized via intercalative polymerization. The nanostructure of the composites was investigated by wide‐angle X‐ray diffractometry (WAXD) and transmission electron microscopy (TEM). The WAXD patterns of the PP/clay nanocomposites indicated that the characteristic diffraction peak of the clay disappeared. The TEM image showed the clay was exfoliated into nanometer size and dispersed uniformly in the PP matrix. The composites exhibited much higher storage modulus compared to that of pure PP. At temperatures higher than Tg, the storage modulus of the PP/clay nanocomposites with 8.1 wt % clay content increased three times that of the pure PP. Additionally, the thermal stability of the nanocomposites significantly increased. The maximum decomposition temperature was increased by 44°C with the introduction of about 10 wt % clay. The heat‐distortion temperatures (HDTs) of the nanocomposites also increased. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3611–3617, 2001  相似文献   

14.
Multi‐walled carbon nanotube/polypropylene composites (PPCNs) were prepared by melt compounding. The linear viscoelastic properties, nonisothermal crystallization behavior, and kinetics of PPCNs were, respectively, investigated by the parallel plate rheometer, differential scanning calorimeter (DSC), X‐ray diffractometer (XRD), and polarized optical microscope (POM). PPCNs show the typical nonterminal viscoelastic response because of the percolation of nanotubes. The rheological percolation threshold of about 2 wt % is determined using Cole‐Cole method. Small addition of nanotube can highly promote crystallization of PP matrix because of the heterogeneous nucleating effect. With increasing nanotube loadings, however, the crystallization rate decreases gradually because the mobility of PP chain is restrained by the presence of nanotube, especially at high loading levels. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

15.
The linear and nonlinear shear rheological behaviors of poly(propylene) (PP)/clay (organophilic‐montmorillonite) nanocomposites (PP/org‐MMT) were investigated by an ARES rheometer. The materials were prepared by melt intercalation with maleic anhydride functionalized PP as a compatibilizer. The storage moduli (G′), loss moduli (G″), and dynamic viscosities of polymer/clay nanocomposites (PPCNs) increase monotonically with org‐MMT content. The presence of org‐MMT leads to pseudo‐solid‐like behaviors and slower relaxation behaviors of PPCN melts. For all samples, the dependence of G′ and G″ on ω shows nonterminal behaviors. At lower frequency, the steady shear viscosities of PPCNs increase with org‐MMT content. However, the PPCN melts show a greater shear thinning tendency than pure PP melt because of the preferential orientation of the MMT layers. Therefore, PPCNs have higher moduli but better processibility compared with pure PP.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2427–2434,2004  相似文献   

16.
PP/PP—g—AA/云母复合体系结晶行为的研究   总被引:3,自引:1,他引:3  
用示差扫描量热分析仪(DSC)、广角X射线(WAXD)的方法研究了PP/PP-g-AA(聚丙烯接枝丙烯酸)/云母复合体系的结晶行为,结果表明:云母、PP-g-AA对聚丙烯具有成核作用,而且云母的用量及PP-g-AA的用量及接枝率对聚丙烯的结晶性能都有影响。  相似文献   

17.
The effect of compatibilizers on the blending torque, crystallization behavior, intercalation level, thermal stability and morphology of EVOH/treated clay systems was investigated. Maleic anhydride‐grafted ethylene vinyl acetate (EVA‐g‐MA) or maleic anhydride‐grafted linear low density polyethylene (LLDPE‐g‐MA) were used as compatibilizers of EVOH with clay, in various concentrations (1, 5 and 10 wt%). The blends were processed using Brabender Plastograph and characterized by XRD, SEM, DSC, DMTA and TGA. X‐ray diffraction shows advanced intercalation within the galleries when the compatibilizers were added. Unique results were obtained for the EVOH/clay/compatibilizer systems, owing to a high level of interaction developed in these systems, which plays a major role. Thermal analysis showed that with increasing compatibilizer content, lower crystallinity levels result, until at a certain content no crystallization has taken place. Significantly higher viscosity levels were obtained for the EVOH/clay blends compared to the neat polymer, as seen by a dramatic torque increase when processed in the Brabender machine. The DMTA spectra showed lower Tg values for the compatibilized nanocomposites compared to the neat EVOH and the uncompatibilized composites. Storage modulus was higher compared to the uncompatibilized EVOH/clay blend when EVA‐g‐MA compatibilizer was added (at all concentrations), and only at low contents of LLDPE‐g‐MA. TGA results show significant improvement of the blends thermal stability compared to the neat EVOH, and to the uncompatibilized blend, indicating an advanced intercalation.  相似文献   

18.
Polypropylene (PP)/clay nanocomposites prepared by melt blending using different clays and coupling agents based on maleic anhydride-grafted PP (MA-PP) were studied. Clay dispersion using field emission gun scanning electron microscope (FEG-SEM) and transmission electron microscopy (TEM), and PP matrix morphology were characterized. Clay dispersion was improved in the presence of MA-PP, as shown by the higher particles surface density (number of particles/mm2) at all micro-, sub-micro- and nano-levels. The PP spherulite diameter was affected by both the presence of MA-PP and clay dispersion. Clay intercalation, characterized by both complementary X-ray diffraction (XRD) and TEM, was greatly influenced by the characteristics of MA-PP. The use of low molecular weight (Mw) MA-PP led to a good and uniform intercalation but with no further possibility to exfoliation. The use of higher Mw MA-PP led to a heterogeneous intercalation with signs of exfoliation. The crystallization behavior of nanocomposites was studied by differential scanning calorimetry (DSC). When fine clay dispersion was achieved with MA-PP, clay-nucleating effect was limited and lower crystallization temperature and rates were observed. It was also shown by wide angle X-ray diffraction (WAXD) that clay induced some orientation of α-phase PP crystallites.  相似文献   

19.
The nanostructure, morphology, and thermal properties of polyamide 6 (PA6)/clay nanocomposites were studied with X‐ray scattering, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The wide‐angle X‐ray diffraction (WAXD) and TEM results indicate that the nanoclay platelets were exfoliated throughout the PA6 matrix. The crystallization behavior of PA6 was significantly influenced by the addition of clay to the polymer matrix. A clay‐induced crystal transformation from the α phase to the γ phase for PA6 was confirmed by WAXD and DSC; that is, the formation of γ‐form crystals was strongly enhanced by the presence of clay. With various clay concentrations, the degree of crystallinity and crystalline morphology (e.g., spherulite size, lamellar thickness, and long period) of PA6 and the nanocomposites changed dramatically, as evidenced by TEM and small‐angle X‐ray scattering results. The thermal behavior of the nanocomposites was investigated with DSC and compared with that of neat PA6. The possible origins of a new clay‐induced endothermic peak at high temperature are discussed, and a model is proposed to explain the complex melting behavior of the PA6/clay nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1191–1199, 2007  相似文献   

20.
Combined effect of α‐nucleating agent (NA) sodium 2,2′‐methylene‐bis(4,6‐di‐tert‐butylphenyl) phosphate (NA11) and nanoclay (NC) on the mechanical properties and crystallization behavior of isotactic polypropylene (iPP) was investigated by mechanical testing, wide‐angle X‐ray scattering (WAXD), differential scanning calorimetry (DSC), polarized optical microscopy (POM), and scanning electron microscopy (SEM). The mechanical testing results indicated that the separate addition of NA11 and NC only increased the stiffness of iPP while the combined addition of NA11, NC, and maleic anhydride grafted polypropylene (PP‐g‐MA) simultaneously improved stiffness and toughness of iPP. Compared to pure iPP, the tensile strength, the flexural modulus, and impact strength of iPP composites increased 9.7, 38.6, and 42.9%, respectively. The result indicated good synergistic effects of NC, NA11, and PP‐g‐MA in improving iPP mechanical properties. WAXD patterns revealed NA11, and NC only induced the α‐crystals of iPP. SEM micrograph showed that the PP‐g‐MA could effectively improve the dispersing of NC in iPP. Finally, the nonisothermal crystallization kinetics of neat iPP and PP nanocomposites was described by Caze method. The result indicated that the addition of NA overcame the shortcoming of low crystallization rate of NC nanocomposites and maintained the excellent mechanical properties, which is another highlight of the combined addition of NAs and nanoclay. Meanwhile, the result showed that nuclei formation and spherulite growth of iPP were affected by the presence of NA and nanoclay. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号