首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
高质量的决策依赖于高质量的数据,数据预处理是数据挖掘至关重要的环节.传统的数据预处理系统并不能很好的适用于大数据环境,企业现阶段主要使用Hadoop/Hive对海量数据进行预处理,但普遍存在耗时长、效率低、无交互等问题.提出了一种基于Spark的交互式数据预处理系统,系统提供一套通用的数据预处理组件,并支持组件的扩展,数据以电子表格的形式展现,系统记录用户的处理过程并支持撤销重做.本文从数据模型、数据预处理操作、交互式执行引擎以及交互式前端四个方面描述了系统架构.最后使用医疗脑卒中的真实数据对系统进行验证,实验结果表明,系统能够在大数据场景下满足交互式处理需求.  相似文献   

2.
新一代的分布式数据处理框架大大提升了数据处理任务的效率。然而,由于不同数据处理任务需要处理的数据的特性各不相同,因此难以找到一种统一的方法来优化数据处理任务的性能。针对不同的数据集,需要分析其相应的数据特性,才能充分利用内存和计算资源,优化任务执行效率。研究数据倾斜度这一数据特性,提出一种数据倾斜度的量化方法,基于分布式处理框架Spark,通过结合数据采样分析和源代码语义分析的方法,自动判断当前所处理数据集的数据倾斜度与处理代码的适合程度,并基于判断结果提出相应的代码自动优化方案,从而提升任务的运行效率。通过多个数据处理实验,验证了优化后提高数据分析任务效率的效果。  相似文献   

3.
由于传统的数据处理系统的数据存储与数据处理能力有限,不能满足处理大量数据的需求。为了发挥数据的价值,高效、高性能地处理大量数据集,提出基于Spark系统结合SIMBA的思路共同建立的大数据分析处理系统,基于Spark SQL的查询方式进行检索;在Spark中嵌入索引管理机制,将其封装在RDD内,用于提高查询效率;通过建立线段树存储数据的方式提高数据检索的效率。对于数据预处理时采用Range Partitioner分区策略的方式对数据进行分区,基于全局过滤和局部索引进行查询。保证该系统在进行查询操作时能够保持高吞吐量和低延迟特性,提高查询效率。  相似文献   

4.
基于Spark的流程化机器学习分析方法   总被引:1,自引:0,他引:1  
Spark通过使用内存分布数据集,更加适合负载数据挖掘与机器学习等需要大量迭代的工作.但是数据分析师直接使用Spark进行开发十分复杂,包括scala学习门槛高,代码优化与系统部署需要丰富的经验,同时代码的复用度低导致重复工作繁多.本文设计并实现了一种基于Spark的可视化流程式机器学习的方法,一方面设计组件模型来刻画机器学习的基本步骤,包括数据预处理、特征处理、模型训练及验证评估,另一方面提供可视化的流程建模工具,支持分析者设计机器学习流程,由工具自动翻译为Spark平台代码高效执行.本工具可以极大的提高Spark平台机器学习应用开发的效率.论文介绍了工具的方法理论和关键技术,并通过案例表明工具的有效性.  相似文献   

5.
在大数据时代,医疗设备复杂的运行状态环境中,实现准确的医疗设备运维预测,是实现智慧医疗的必要前提,为保证医疗设备的正常运行,此系统将使用Scala语言在Spark平台进行并行化实现,采用K-means聚类算法计算预测模型,提高算法处理大数据的能力.以数据采集、数据存储、数据分析为主,以Tomcat作为Web服务器框架进...  相似文献   

6.
丁东亮  吴东月  于福利 《计算机科学》2016,43(Z6):502-504, 528
人类基因组作为一种具有高价值的、弥足珍贵的大数据信息,亟待人们进行高效、准确的分析处理。由于传统Hadoop云框架的数据处理存在高延迟的致命缺点,Spark云平台应运而生。基于Spark云平台的人体基因组数据系统将为疾病的早期发现或治疗以及降低婴儿的出生缺陷等做出巨大贡献。  相似文献   

7.
传统聚类算法由于单机内存和运算能力的限制已经不能满足当前大数据处理的要求,因而迫切需要寻找新的解决方法。针对单机内存运算问题,结合聚类算法的迭代计算特点,提出并实现了一种基于Spark平台的聚类系统。针对稀疏集和密集集两种不同类型的数据集,系统首先采用不同策略实现数据预处理;其次分析比较了不同聚类算法在Spark平台下的聚类性能,并给出最佳方案;最后利用数据持久化技术提高了计算速度。实验结果表明,所提系统能够有效满足海量数据聚类分析的任务要求。  相似文献   

8.
运行数据是大数据系统中增长最快、最为复杂也是最有价值的数据资源之一。基于运行数据,软件开发者可以分析关于软件质量和开发模型的重要信息。Spark作为一个分布式系统,在运行过程中会产生大量的运行数据,包括日志数据、监控数据以及任务图数据。开发者可以基于运行数据对系统进行参数调优。然而该系统所涉及的参数种类繁多、影响多样且难以评估,若对系统了解不足,进行参数调优存在较大的困难。提出运行数据历史库的概念,历史库中存储的是以往运行任务的特征信息以及运行配置信息。同时提出了基于历史库搜索的参数优化模型,并实验验证了本文提出的参数优化模型对用户任务性能提升具有较好的效果。  相似文献   

9.
增量数据更新是各个异构系统之间进行数据共享融合的关键,也是构建增量式数据仓库来进行数据分析的关键.随着大数据技术的发展,传统的增量更新算法已经无法适应时代的潮流.为此,本文基于Spark等成熟的大数据技术提出了一种近实时增量数据更新方法.本文采用OGG+kafka进行增量数据捕获,采用Spark对增量数据进行实时分析,...  相似文献   

10.
从海量出租车GPS轨迹数据中挖掘和分析城市出租车乘客的出行特征,可以为城市交通管理者和出租车行业管理者在城市交通规划与管理、城市交通流均衡与车辆调度等方面提供决策依据.基于Spark大数据处理分析平台,选择YARN作为资源管理调度系统,采用HDFS分布式存储系统,对出租车GPS轨迹数据进行挖掘.给出了基于Spark平台的出租车乘客出行特征的挖掘方法,包括出租车乘客出行距离分布、出租车使用时间分布及出租车出行需求.实验结果表明,基于Spark平台分析方法能够快速且准确的分析出出租车乘客出行特征.  相似文献   

11.
大数据技术在分析与挖掘交通大数据方面扮演着越来越重要的角色.为了快速有效地对出租车的运营模式与载客策略进行分析,设计效益指数模型对出租车效益进行量化排序,以高效益出租车为研究对象,基于Spark大数据框架开发一个轨迹数据处理与可视化平台.首先,处理高效益出租车轨迹数据得到用于可视化的特征数据.而后进行可视化分析,包括:统计分析高效益出租车运营特性并实现交互式图表展示,采用蜂窝形格网与DBSCAN算法对不同时段高效益出租车载客点进行热点可视化,实现基于缓冲区的交互式轨迹查询并提取出轨迹相关因子.最后,利用成都市出租车GPS轨迹数据验证了所提平台的有效性及可靠性.  相似文献   

12.
大数据时代的到来为信息处理带来了新的挑战,内存计算方式的Spark显著提高了数据处理的性能.Spark的性能优化和分析可以在应用层、系统层和硬件层开展,然而现有工作都只局限在某一层,使得Spark语义与底层动作脱离,如操作系统参数对Spark应用层的性能影响的缺失将使得大量灵活的操作系统配置参数无法发挥作用.针对上述问题,设计了Spark存储系统分析工具SMTT,打通了Spark层、JVM层和OS层,建立了上层应用程序的语义与底层物理内存信息的联系.SMTT针对Spark内存特点,分别设计了针对执行内存和存储内存的追踪方式.基于SMTT工具完成了对Spark迭代计算过程内存使用,以及跨越Spark,JVM和OS层的执行/存储内存使用过程的分析,并以RDD为例通过SMTT分析了单节点和多节点情况下Spark中读和写操作比例,结果表明该工作为Spark内存系统的性能分析和优化提供了有力的支持.  相似文献   

13.
随着智能交通领域的迅速发展,日益增长的交通数据量已经达到TB甚至PB级别,智能交通领域也开始运用大数据技术对海量的行车数据进行深入的挖掘分析,向着构建一个综合性智能交通信息服务平台方向发展.本文提出了一种基于交通大数据的智能信息服务平台的总体设计方案,重点研究了系统的总体架构,应用架构和数据中心的设计等三个方面.通过测试,该平台可以很好的满足用户的前期需求,平台基于分层和分模块的设计思想可以很好的应对用户后期需求变更.  相似文献   

14.
谭亮  周静 《计算机系统应用》2018,27(10):133-139
交通大数据是解决城市交通问题的最基本条件,是制定宏观城市交通发展战略规划和进行微观道路交通管理与控制的重要保障.针对于智能交通系统中数据产生快、实时性强、数据量大的特点,本文基于Spark Streaming和Apache Kafka的组合构建了一个实时交通数据处理平台,用于处理通过双基基站采集的数据,采用时间窗口机制从持续的Kafka分布式消息队列中获取数据,并按照规则将数据分类处理后保存到数据库.本文对平台的系统架构和内部结构进行了详细的介绍,并通过实验验证了系统的实时处理能力,完全可以在大规模高并发的数据流下进行应用.  相似文献   

15.
陈恒 《计算机科学》2016,43(Z11):93-96
随着大规模语义数据的涌现,研究高效的并行化语义推理成为热点问题之一。现有推理框架大多存在可扩展性方面的不足,难以满足大规模语义数据的需求。针对现有推理框架的不足,提出一种基于Spark的大规模语义数据分布式推理框架。该框架主要包括语义建模、规则提取和基于Spark的并行推理机等3个模块。通过过程分析和推理实例验证,提出的分布式并行推理的计算性能(T(n)=O(log2n))远远优于顺序式推理的计算性能(T(n)=O(n))。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号